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A ‘granocentric’ model for random packing
of jammed emulsions
Maxime Clusel1*, Eric I. Corwin1*, Alexander O. N. Siemens1 & Jasna Brujić1

Packing problems are ubiquitous1,2, ranging from oil extraction
through porous rocks to grain storage in silos and the compaction
of pharmaceutical powders into tablets. At a given density, par-
ticulate systems pack into a mechanically stable and amorphous
jammed state3,4. Previous theoretical studies have explored a
connection between this jammed state and the glass transition4–8,
the thermodynamics of jamming9–12 and geometric modelling of
random packings13–15. Nevertheless, a simple underlying mech-
anism for the random assembly of athermal particles, analogous
to crystalline ordering, remains unknown. Here we use three-
dimensional measurements of packings of polydisperse emulsion
droplets to build a simple statistical model in which the com-
plexity of the global packing is distilled into a local stochastic
process. From the perspective of a single particle, the packing
problem is reduced to the random formation of nearest neighbours,
followed by a choice of contacts among them. The two key para-
meters in the model—the available space around a particle and the
ratio of contacts to neighbours—are directly obtained from experi-
ments. We demonstrate that this ‘granocentric’ view captures the
properties of the polydisperse emulsion packing—ranging from
the microscopic distributions of nearest neighbours and contacts,
to local density fluctuations, to the global packing density.
Application of our results to monodisperse and bidisperse systems
produces quantitative agreement with previously measured trends
in global density16. Our model therefore reveals a general principle
of organization for random packing and may provide the founda-
tions for a theory of jammed matter.

Previous studies of the jammed state include characterizations of
the network of forces7,17–20, the packing microstructure10–12,21,22, and
effects of particle shape23 and packing history24. In the following
experiments, we visualize three-dimensional random packings of
frictionless emulsion droplets using confocal microscopy to char-
acterize the geometry and connectivity of the packing. Figure 1a
presents an image of a fluorescently labelled oil-in-water emulsion,
creamed under gravity to form a mechanically stable random pack
(Methods). The confocal data are analysed using a deconvolution
technique, which extracts the radius and position of each droplet
with an accuracy of 1% of the average particle size (Methods). A
typical probability distribution of radii P(r), shown in Fig. 1b,
exhibits a width of 23% of the mean radius. To characterize the local
neighbourhood of each particle, we tessellate the packing using the
navigation map25, an extension of the Voronoi map to polydisperse
systems. Each point in space is allocated to the particle whose surface
is closest (Fig. 1c). Two particles are said to be neighbours if their
corresponding cells share a common interface in the navigation map.
Each cell in Fig. 1c is coloured according to the number of neighbours
n around the central particle, which ranges from 4 to 30. This wide
range arises from the polydispersity of the sample and stands in

contrast to the narrow range of nearest neighbours, typically from
12 to 17, of monodisperse systems26.

A subset of the neighbours is in contact with the central particle and
therefore capable of transmitting forces. The resulting network of
forces gives rise to the mechanical stability of the packing. In the con-
focal images, points of contact between particles are self-consistently
determined by the geometric overlap of spheres that reconstruct the
particles and an intensity enhancement of the fluorescence of Nile Red
dye22 (Fig. 1a). We measure the mean number of contacts, also known
as the coordination number, to be Æzæ 5 6.3 6 0.3, in good agreement
with Æzisoæ 5 6 required for isostatic mechanical equilibrium27. A slight
discrepancy may be expected owing to the small deformation of the
droplets.

While the global constraint of isostaticity is satisfied, the number
of neighbours n and contacts z around each particle fluctuates sig-
nificantly within the packing. Figure 1d shows that for each n, the
number of contacts z can take any value between 0 and n, which
suggests that z is randomly distributed. In addition, for particles with
more neighbours the most likely number of contacts increases, indi-
cated by the colour-coded probability map in Fig. 1d. Moreover, both
n and z increase with the radius r of the central particle, as shown in
the scatter plot in Fig. 1e. This makes sense, as larger particles have
more surface area available on which to fit neighbours.

To understand these observations, we consider the packing problem
from the granocentric point of view of a single particle in the bulk,
exemplified by the particle marked by a star in the confocal image in
Fig. 1a. We propose a granocentric model for random packing, ini-
tially achieved by the formation of a set of neighbours, followed by the
creation of contacts. This model allows for a definition of a local cell,
giving access to the local packing fraction.

The starred particle in Fig. 1a is surrounded by 13 nearest neigh-
bours. The space that each neighbour occupies depends on its size
relative to the central particle. The space occupied by each neighbour
around a central particle is characterized by the solid angle v it
subtends (Fig. 2a). Using this geometric description, we remove a
trivial dependence of local packing on the central particle radius,
which represents an important simplification. As shown in Fig. 2b,
the packing of the neighbours precludes the addition of another
neighbouring particle because there is a limited amount of available
solid angle around the central particle, of radius rc. This suggests an
upper limit Vmax(rc) on the available solid angle.

We therefore model the formation of a set of n nearest neighbours
around a central particle of radius rc as a random selection of neigh-
bours and a summation of their respective solid angles up to a thresh-
old Vmax(rc). It follows that n is the number of particles needed to
reach, without exceeding, Vmax(rc). Following ref. 14, we ignore all
neighbour–neighbour correlations by neglecting relative positions of
neighbours on the surface of the central particle. The sizes of each
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successive neighbour are therefore statistically independent and
identically distributed. The formation of a set of neighbours thus
corresponds to the first passage of a directed one-dimensional
random walk, with steps given by the solid angles of the nearest
neighbours (Fig. 2c).

In order to describe all the properties of a packing, knowledge of
nearest neighbours must be supplemented by knowledge of the con-
tact network responsible for mechanical stability. As noted in Fig. 1d,
only a fraction of the n nearest neighbours are in contact with the
central particle. The fluctuations in z shown in Fig. 1e suggest that
contacts are randomly chosen among neighbours. We model the
selection of contacts by Bernoulli trials with success rate p(rc),

thereby neglecting all possible collective behaviour. Thus the distri-
bution of the number of contacts z for a given number of neighbours
n, P(zjn), is a binomial distribution.

We have introduced two processes determining the connectivity of
experimental packings. They are further characterized by fluctua-
tions in the local packing fraction11, which is relevant to global
properties such as permeability and yield stress. The local packing
fraction wlocal is defined as the ratio of the particle volume Vparticle to
the cell volume Vcell. As our granocentric model does not include
information on neighbour positions, it is not possible to use the
experimental definition of a cell in this framework. Instead, we use
an effective definition for the local cell incorporating two salient
physical features of the experimental cell: first, a particle with more
neighbours will have a higher wlocal; second, for a given number of
neighbours a particle with more contacts will have a higher wlocal.
Therefore, we approximate the cell volume as the sum of the volume
of the central particle plus the volumes contributed by a portion of
space between the central particle and each of its neighbours (see
Fig. 3c inset; a more complete description is given in Methods).
The differing contribution to the cell volume by the neighbours
and contacts is described by an effective surface-to-surface distance
d, for non-contacting neighbours.

Thus, the statistical model reduces the packing problem comple-
xity to two independent random processes at the single-particle level:
first, the formation of a set of nearest neighbours is effected by
assuming that the neighbours are chosen independently; second,
the selection of contacts is assumed to be independent. The local
definition of a cell provides further access to local packing fraction
fluctuations. Whereas previous geometric models have predicted the
average coordination number and density of discrete multicompo-
nent systems14,15, by mapping the packing problem onto the first
passage of a random walk we are able to analytically study continuous
distributions of radii and their influence on the full distributions of
the number of nearest neighbours, coordination number and local
density. Importantly, our model exploits the previously neglected
observation that not all particles touch their neighbours.

Overall, the model introduces three parameters, Vmax(rc), p(rc)
and d, with different physical interpretations. The central parameter
of our model, Vmax(rc), is the available solid angle around a particle
of radius rc. It is an effective parameter whose value encompasses the
details of the packing structure, such as polydispersity, steric effects,
and long range correlations. For example, the available solid angle of
a face-centred-cubic crystal is 3.2p owing to the space between neigh-
bours, whereas the total solid angle around a sphere is 4p. As
described in Methods, the tools of random walks yield a functional
relationship between the average number of neighbours around
particles of radius rc and the threshold Vmax(rc). Using the experi-
mental average value of n for each radius rc presented in Fig. 1e, the
model estimates Vmax(rc). Remarkably, the experimentally deter-
mined values of Vmax(rc) are independent of rc to within 60.15p
around a value of ,3.68p. Thus, the ratio of the occupied surface
area to the total surface area of the central particle does not depend on
the size of the central particle in this polydisperse sample. The value
of 3.68p is reasonable because it implies that there are unfilled spaces
between the neighbours, observed in the example of Fig. 2b. The
interpretation of Vmax as an upper limit is tested by directly
measuring whether the total solid angle Vtot around each particle lies
below Vmax. Figure 2d shows that 98% of the measured values are
bounded by the estimated value of Vmax, consistent with the
proposed model assumptions.

To select contacts among neighbours, we introduced the success
rate p(rc) 5 Æzjrcæ/Ænjrcæ. There is no reason to suspect that this
probability p(rc) should be independent of particle size. However,
our measurements in Fig. 2e reveal that this average fraction of neigh-
bours in contact is always p(rc) < 0.41. This independence represents
an important simplification and enhances the appeal of the model.
We test the assumption that contacts are chosen independently by

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 60

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
ab

ili
ty

 d
en

si
ty

, P

b

Radius, r (µm)

Sl
op

e 
= 

1

0 5 10 15 20 25 30
Number of neighbours, n

0

5

10

15

N
um

b
er

 o
f c

on
ta

ct
s,

 z

a

c

e

d

30

15

0

n

1 2 3 4 5 6
Radius, r (µm)

0

5

10

15

20

25

N
um

b
er

Figure 1 | Microstructure of random polydisperse emulsions. a, Projection
of a three-dimensional confocal image of a creamed emulsion shows the
emission fluorescence of droplets in green (505–570 nm) and the droplet
contacts in yellow (575–640 nm). Scale bar, 5 mm. b, The distribution of
droplet radii in this emulsion exhibits a mean of 3.3 mm and a standard
deviation of 0.74 mm. c, Tessellation of the image in a according to the
navigation map defines a local cell for each droplet, while the colour map
indicates the number of nearest neighbours n. d, For a given n, the number of
contacting neighbours z is shown as a scatter plot. The colour range from
blue to red indicates an increasing probability of finding a particle with z
contacts. e, The scatter plot shows the fluctuations in the number of contacts
z (blue diamonds) and neighbours n (green circles) with droplet size, while
their average values are shown to increase almost linearly (black lines). Inset,
diagram illustrating the contacting neighbours of a droplet (blue) and those
sharing an interface (green).
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examining the experimental distribution of z for a given n. As seen in
Fig. 2f for n 5 13, this distribution is captured by a binomial distri-
bution with p 5 0.41.

The final parameter in our model characterizes the local cell
definition. The mean radius is a natural length scale in our system,
which we use to quantify the effective distance d. We introduce a
dimensionless parameter a such that d 5 aÆræ, assumed to be the
same for every non-contacting particle. We choose a 5 0.30 to match
the experimentally measured mean local packing fraction. Thus, gaps
between the neighbours are significantly smaller than the average
particle size, consistent with the notion that one cannot fit further
particles between a particle and its neighbour.

Using this framework, we calculate distributions of n, z and wlocal,
and compare them with experimental results to test our model. Using
the equations presented in Methods, we demonstrate in Fig. 3c that
the predicted distributions are in excellent agreement with the
experimental data. Furthermore, the full distributions as a function
of the radius of the central particle are also shown to be in agreement
(Supplementary Figs A–F). These results validate the model as a tool
to predict the effects of polydispersity on random packings. As shown
in Fig. 3b, both the experiments and the model show that 18% of
particles are mechanically unstable, with fewer than four contacts.
These particles, known as ‘rattlers’, arise naturally from the random
packing processes of our model, in contrast to existing models that
exclude rattlers and only focus on the network of contacts24. The
agreement between model and experiment for local quantities n, z
and wlocal shows that the model quantitatively captures the local
packing structure. The applicability of the model to packings with
other size distributions is presented in Supplementary Information
Section 4.0 and Supplementary Figs G–I. Numerical simulations
show that the range of values for each parameter is narrow, but that
the parameters are not universal for all polydispersities.

We can extend our local view of packing to predict the global
density, a long-standing question in understanding random close
packing11,12,14,24,28,29. The influence of the particle size distribution
on global density has many industrial applications, such as predicting
the density of dried paint or the density of porous rocks. The global
packing fraction is defined as the ratio of the total volume of matter
divided by the total volume of the sample. This is translated into our
local model as:

wglobal~
Vparticle

� �
Vcellh i ð1Þ

It is important to note that the model value for the global packing
fraction is relatively insensitive to the local fluctuations14 and
depends strongly only on a. Using the model definition of the local
cell volume, we predict the global density of our packings to within
0.5% of the experimentally measured 66.4%. It is not surprising that
this polydisperse packing is denser than its monodisperse counter-
part (wglobal < 64%)24, as small particles can pack in the interstices of
larger ones.

We further probe the predictive power of our model for systems
with other size distributions by considering bidisperse packings. In
such packings, polydispersity is a function of the size ratio of the two
species and the volume ratio of all small particles to all particles.
Using the local cell definition with the same parameters as for our
experimental system, the model reproduces published experimental
data16 for different volume fractions of small particles and size ratios,
even in the limit of the monodisperse case (Fig. 3d). This demon-
strates that a local model based on geometric considerations alone
provides an effective description of the packing as a whole.

The model accurately characterizes random, polydisperse packings
in terms of numbers of nearest neighbours and contacts per particle,
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Figure 2 | Granocentric view of random packing. a, The space occupied by a
neighbour around a central particle is measured by the solid angle it
subtends, which is shown to depend on the neighbour size (green, smaller;
red, larger). b, Nearest neighbours of the starred particle in Fig. 1a cover the
surface of the central particle. c, Space-filling around the central particle in
b is represented by a sum of the colour-coded solid angles v occupied by
each neighbour. d, A scatter plot of the total solid angle Vtot for each particle

in the packing shows no dependence on the radius r of the central particle.
Consistent with the model prediction, almost all the points lie below the
maximal solid angle Vmax 5 3.68p, shown by the dashed line. e, Mean ratio
of the number of contacts to neighbours, p 5 Æz/næ, is shown to be
independent of r. f, For all particles with n 5 13, the distribution of contacts
P(z | n) is consistent with a binomial distribution with a probability p 5 0.41.
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fluctuations in local density, and global density of the system. Our
experiments reveal that the model parameters, Vmax and p, are inde-
pendent of the central particle size, leading to a simple physical
interpretation of the mechanism of random packing. From the per-
spective of each particle, a stable random packing is achieved when
(1) the surrounding space is filled with a set of nearest neighbours
and (2) some of those neighbours touch the central particle to
achieve mechanical equilibrium. This model offers a simplified view
of the packing problem, and opens an analytical path to explore the
industrially important effects of polydispersity on local and global
properties of packings.

It is surprising that such a simple model should describe the
random packing of polydisperse spheres. For monodisperse pack-
ings, the only source of disorder is positional. Such a system is an
archetypal example of a complex system, where correlations between
particle positions determine the physical behaviour. In our system,
the polydispersity serves as a second source of randomness added to
the positional disorder. Our model is able to describe a polydisperse
packing because the local source of randomness coming from the
distribution of radii, P(r), dominates the positional disorder.

The granocentric model can be used to count the number of equi-
valent local configurations in disordered packings, and thus may
provide a definition for entropy. Thus, we may probe the contention
that jammed packings can be described using a thermodynamic
approach9. Other open questions that extensions to the model could
answer include the effects of spatial dimensions and particle shape on
packings. We have so far considered purely random packings, but it
would be interesting to examine how correlations influence the
microstructure, both in the model and in the experiments. This work
represents an effective medium model for random close packing,
while the determination of model parameters from first principles
may provide a route to a complete theory.

METHODS SUMMARY
Mathematical methods. The assumption that successive steps in the random

walk are independent leads us to use the Laplace transformL. If X and Y are two

independent random variables of respective probability density PX and PY, then

the probability density of the sum PX1Y satisfies L[PX1Y] 5L[PX] L [PY]. This

basic observation, combined with standard probability tools, leads to the main

results of this Letter.

Let v~2p 1{
1

1zr=rc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

2r

rc

r� �
be the solid angle subtended by a particle

of radius r on a given central particle of radius rc, where r is drawn from the

distribution P(r). We compute frc
vð Þ, the probability density of solid angle

around the central particle, by a change of variables from P(r). The mean number

of neighbours Ænjrcæ around the central particle of radius rc is then given by

n rcjh i~L{1 1

s

L frc
½ � sð Þ

1{L frc
½ � sð Þ

� �
Vmaxð Þ

where L{1 is the inverse Laplace transform with respect to s, the conjugate

variable of Vmax. The probability density for a particle of radius rc to have n

neighbours given the maximal solid angle Vmax, Pneighbour(n;rc, Vmax), is given

by:

Pneighbour n; rc,Vmaxð Þ~L{1 1{L frc
½ � sð Þ
s

L frc
½ � sð Þn

� �
Vmaxð Þ

Likewise, the distribution of coordination number z can be computed as:

Pcontact z; rc,Vmaxð Þ~L{1
1{f̂f rc

sð Þ
s

p f̂f rc
sð Þ

� 	z

1{ 1{pð Þf̂f rc
sð Þ

� 	zz1

2
64

3
75 Vmaxð Þ

Definition of local cell. The volume of a cell, Vcell, is defined as

Vcell~Vparticlez
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Figure 3 | Comparison of model predictions with experiments. a, b, The
probability densities of the number of neighbours (a) and contacts (b) show
excellent agreement between the experimental data and the statistical model.
c, The probability density of the local packing fraction from the model
successfully captures that obtained from the navigation map in Fig. 1c. Inset,

volume contributions to the cell around each particle in the model. d, Model
predictions for the global packing fraction of bidisperse systems are in good
agreement with the experimental data reported16 for size ratios of 2.58:1
(brown) and 3.41:1 (green). The lighter curves represent model predictions
for size ratios ranging from 1:1 to 4.5:1 in increments of 0.5.

LETTERS NATURE | Vol 460 | 30 July 2009

614
 Macmillan Publishers Limited. All rights reserved©2009



where vj is the volume contribution of the jth contacting neighbour and v�j is the

volume contribution of the jth non-contacting neighbour. Let C be the cone

subtended on the central particle by the neighbour particle in contact, and S be

the surface of the central particle.

For contacting particles, letH be the surface of the hyperboloid defined by the

navigation map of these two particles with surfaces in contact. The volume v is

defined as the volume of a region between the central particle and the neighbour

that is the portion of C between S and H.

For non-contacting particles, letH’ be the surface of the hyperboloid defined
by the navigation map of these two particles with surfaces separated by a distance

d. The volume v* is then the portion of C between S and H’.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Emulsion preparation and imaging. The oil-in-water emulsion is prepared by

mixing 3 vol.% Tergitol NP7 (nonyl phenolethoxy 7, Sigma) non-ionic surfactant

with 3 wt% high viscosity Alginate HF120L (Promova) in 30 ml deionized water

(Millipore), after the method of ref. 30. The disperse phase is composed of silicone

oil (PDMS) droplets with varying viscosities, fluorescently labelled by Nile Red

dye18. This mixture is injected into a narrow gap Couette mixer with a gap size of

100mm and sheared between 18–22 r.p.m. A 16 mM solution of sodium dodecyl

sulphate (SDS, Sigma) in a refractive index matched solution of water (50 wt%)

and glycerol (50 wt%) infused with Nile Red dye is added to the creamed droplets.
The transparent emulsion is loaded into a sample cell, allowed to cream under

gravity and analysed using a Leica SP2 confocal laser scanning microscope

equipped with a high numerical aperture oil-immersion objective lens with a

1003 magnification. The fluorescent dye is excited using a 488 nm argon laser

and emission is detected using a photomultiplier behind a long-pass 500 nm

filter with two channels.

Image analysis. The centre point and radius of each droplet was measured from

the confocal images using a deconvolution technique that is well suited to

measurements on jammed systems. Each droplet was considered as the convolu-

tion of a d-function at its centre and a sphere of radius r. To make the measure-

ments, we simply deconvolved the images to obtain the positions of all particles

with a given radius r using the following procedure.

A test 3D volume was created with a sphere of radius r at its centre. Gaussian

noise was added to this test particle with similar characteristics to the noise found

in the confocal image. Both volumes were transformed into the frequency

domain, where the Fourier transform of the confocal image was divided by

the Fourier transform of the test volume. A tuned Wiener filter was applied to

increase the signal relative to the noise. The resulting Fourier volume was then

transformed back into the positional domain. In the resulting volume, numerical

approximations to d-functions marked the centre point of each droplet of radius

r. This procedure was carried out for each radius r until every droplet in the

volume was located.
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