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5LPT, École Normale Supérieure, UMR 8549 CNRS, 24 Rue Lhomond, 75005 France

APPENDIX A: NUMERICAL SIMULATIONS

Molecular dynamics simulations of HS and SS energy
minimizations of N=218 spheres in d=3, N=8000 in
4 ≤ d ≤ 9, and at least N=214 in d=10 are performed un-
der periodic boundary conditions. For d = 3, the choice
of a very large system is motivated by the need of re-
ducing the statistical noise in the intermediate scaling
regime for Fig. 3 of the main text. The d > 3 system
sizes chosen ensure that even when the system is at its
densest the box edge remains larger than 2σ, which pre-
vents a particle from ever having two direct contacts with
another one. There are strong reasons to believe that al-
though relatively small these N nonetheless provide a
reliable approximation of bulk behavior. First, with in-
creasing d the largest diagonals of the simulation box are√

d larger than the box edge. Second, correlations of
the fluid structure are expected to decrease very quickly
with increasing d [1, 2], and correspondingly finite-size ef-
fects are reduced. The validity of these rationalizations,
which are consistent with the decorrelation property of
high d sphere packings [3], have been satisfactorily tested
in d = 8 in Ref. [4].

1. Hard Sphere LS Compressions

Event-driven HS simulations are performed at ther-
mostated inverse temperature β for spheres of mass m,
starting from random configurations in the limit σ → 0.
Time has units of

√
βmσ2 [2, 4], but all dimensional

quantities are expressed in units such that β = 1 and
m = 1. The reduced pressure p = βP/ρ, with ρ = N/V
for pressure P , diverges at the jamming packing fraction
ϕγ

p as p ∼ |∆ϕ|−1 with ∆ϕ = ϕ− ϕγ
p [5]. Crystallization

in d > 3 is strongly suppressed, so access to deeply su-
persaturated starting configurations can be attained via
the slow growth rate γ = σ̇ = 3 × 104 [2, 6]. In d = 3,
where the crystallization of monodisperse hard spheres
is relatively rapid for moderately high packing fractions,
γ = 10−2 is employed up to p = 103, but the slow com-
pression rate is used afterwards. The force between par-
ticles in high p configurations is measured from the rate
of momentum exchange between pairs of particles in sim-
ulations with γ = 0. These measurements are made over
at least 104 collisions per particle.

2. Soft Sphere Energy Minimizations

The harmonic SS energy is E(X, σ) =
∑

i>j v(|~ri−~rj |)
with X = {~ri} and v(r) = ε(σ − r)2θ(σ − r). Units are
chosen such that ε = 1. We start from random sphere
configurations X+ = X− and use σ− and σ+ that bracket
the jamming point, i.e., E(X−, σ−) = 0, E(X+, σ+) > 0.
Jamming is identified as the onset of non-zero energy, it-
eratively determined using a bisection method. At each
iteration, an intermediate value σm is chosen, and the
energy at σm is minimized via conjugate-gradient (CG)
minimization starting from either X+ (from above) or
X− (from below). The configuration obtained after min-
imization Xm then substitutes (X+, σ+) = (Xm, σm) if
E(Xm, σm) > 0, or (X−, σ−) = (Xm, σm) if E(Xm, σm) =
0. The procedure stops when either of two conditions is
satisfied: the energy per particle E(X+, σ+)/N falls be-
low 10−20, corresponding to typical overlaps of the order
of 10−10; or the change in E(X+, σ+) from one mini-
mization step to the next is less than the bound set by
double precision arithmetic, i.e., 10−8E. The final value
of σ− defines the final packing fraction ϕ↑e in the proce-
dure from below and σ+ that of ϕ↓e in the procedure from
above.

3. Rattler Analysis

The rattlers are self-consistently determined by iden-
tifying the number of particles with fewer than d + 1
neighbors within a distance cutoff for the smallest |∆ϕ|
obtained by a given approach to jamming. In HS, a cut-
off of σ(1+100/p) is used, which roughly corresponds to
a cutoff of σ(1 − ε/100) for SS, where the scaling vari-
able ε =

√
e d/2. This cutoff slightly overestimates the

number of rattlers at jamming, but the rapid diminution
of the fraction of rattlers with d (Supplementary Fig. 4)
guarantees the robustness of the results.

4. Extraction of the jamming density

Following [4], for each compression run at fixed γ we
perform a linear fit of the line 1/p vs ϕ with p & 50.
The point where the linear fit vanishes, indicating infinite
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Supplementary Figure 1: The prefactor of energy e = e0[(ϕ−
ϕ↓e)/ϕ↓e ]

2 from numerics (black curve) and from G-RT (red
curve, bare data; green curve, corrected data, see Sec. C 2
and [7, Section VI.B]). (inset) The scaling e = e0[(ϕ −
ϕ↓e)/ϕ↓e ]

2 upon approaching ϕ↓e from above for d = 3, with
σ− = 0 and σ+ →∞. Points are numerical data and the line
is a quadratic fit used to extract e0 (the value of ϕ↓e is obtained
by imposing visually the best alignment of the data).

pressure, defines ϕγ
p for this given run. Next, for a fixed

dimension, we fit ϕγ
p = ϕγ→0

p + A
√

γ to extrapolate the
jamming density at γ → 0.

For the energy minimization protocol, when approach-
ing jamming from above, the jamming density can be
obtained by accurately fitting the energy data with e =
e0[(ϕ − ϕ↓e)/ϕ↓e]2 (inset in Supplementary Fig. 1). We
focus in particular on minimization runs performed with
initial σ− = 0 and σ+ →∞, which in practice correspond
to taking the largest σ+ at which no variation of ϕ↓e is
detected. The associated prefactor e0 can then be com-
pared with the prediction from G-RT. A good agreement
is obtained when the correction discussed in [7, Section
VI.B] is taken into account (Supplementary Fig. 1).

Note that ϕγ→0
p and ϕmax

e are quite close to each
other. They indicate the best packing density that can
be reached using our two different compression protocols.
Note that according to G-RT both should be smaller than
the maximal packing density of glassy states, called glass
close packing ϕGCP. According to the theory, it is very
unlikely that packings at ϕGCP can be produced in poly-
nomial time, hence it is expected that both ϕγ→0

p and
ϕmax

e are smaller than ϕGCP.

APPENDIX B: SCALING FUNCTIONS

1. Structure Scaling Analysis

When approaching jamming with protocol (i), Z(r) =
0 for r < σ, and for r ≥ σ, p parametrizes the scaling

function for Z(r ≥ σ). A first scaling regime r−σ ∼ p−1

sees Z(r) grow from 0 to the average number of “con-
tacts” z as

Z(r) = zZ−[(r − σ)p/σ] (B1)

with Z−(x) ∼ 1 − Cx−1−θ when x → ∞ for a constant
C [5]. Force-bearing contacts are only observed at jam-
ming proper, but their signature develops asymptotically.
A second regime for finite r − σ has

Z(r) = z + C ′(r − σ)1−α , (B2)

where C ′ is a constant. At jamming, these nearly touch-
ing “quasi-contacts” carry no force. For large r, a trivial
regime develops independently of |∆ϕ| (Sec. B 3). Match-
ing the first two scaling regimes implies the existence of
an additional intermediate regime H− for r − σ ∼ p−µ

Z(r) = z + pν−µH−[(r − σ)pµ/σ] (B3)

with µ < 1 and ν < µ. Consistency then requires that
H−(x → 0) ∝ −x−1−θ and H−(x → ∞) ∝ x1−α with
scaling relations ν = αµ and µ = (1 + θ)/(2 + θ − α).

When approaching jamming with protocol (ii) from
above, the remaining overlaps provide a scaling variable
ε =

√
e d/2 ∝ |∆ϕ| [7]. In spite of the very different

preparation protocol, similar structural regimes are iden-
tified. In the r < σ contact regime, Z(r) grows from 0 to
z by a universal scaling function

Z(r) = zZ+[(σ − r)ε−1/σ] (B4)

with Z+(x) ∼ 1 − C ′′x1+θ when x → 0 for a constant
C ′′. For r > σ, here again

Z(r) = z + C ′(r − σ)1−α , (B5)

hence the two regimes must be matched by an interme-
diate scaling function H+ for r − σ ∼ εµ

Z(r) = z + εµ−νH+[(r − σ)ε−µ/σ] (B6)

with µ > 1 and ν < 1. Consistency here requires that
H+(x → −∞) ∝ −|x|1+θ and H+(x → ∞) ∝ x1−α with
ν = αµ and µ = (1 + θ)/(α + θ).

In both cases, the exponents α and θ are determined by
collapsing the numerical results using this scaling form,
which was repeated for different systems. This constraint
leaves a relatively small uncertainty on the final value,
which provides the error bar.

2. Force Scaling Analysis

When HS approach jamming, the cumulative force dis-
tribution G(f) approaches a scaling function defined by
G(yf) → G−(y). The relation between the scaling func-
tions Z−(x) and G−(y) suggested in Ref. [5]

Z−(x) = 1− x

∫ ∞

0

dy G−(y) e−xy (B7)
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Supplementary Figure 2: Cumulative force distribution G(f)
in d=3–10 (a) for HS with θ = 0.28(3) and (b) for SS with
θ = 0.42(2). The force distribution in higher d is essentially
the same as in d = 3 and the high force behavior agrees
equivalently well with the G-RT predictions. The exponents
extracted from the small force tail are also numerically in-
distinguishable. (inset) Test of Eq. (B7) from the numerical
results for Z−(x) (points) and plugging the numerical G(f)
in Eq. (B7) (solid line)

is verified in Supplementary Fig. 2. It follows that if
Z−(x) ∼ 1− Cx−1−θ for x →∞, then G−(y) ∼ y1+θ for
y → 0, which is here observed for all d ≥ 3 (Supplemen-
tary Fig. 2). When SS approach jamming from above,
the interaction potential gives f = 2(σ−r) for 0 ≤ r ≤ σ

and zero otherwise, so G(f) = 1− Z(σ−f/2)
Z(σ) . In the jam-

ming limit G(2y ε σ) → G+(y) = 1−Z+(y), and therefore
G+(y) ∼ y1+θ, as in the previous case. This behavior is
here observed in all d ≥ 3 (Supplementary Fig. 2).

3. High d Structure

In the contact regime r − σ ∼ ∆ϕ, G-RT predicts
that scaling functions ZRT

± should describe the growth of
Z(r) from 0 to the isostatic value, as given in Eqs. (C10)
and (C17). Both results are tested in Supplementary
Fig. 3 for d=3–10. The collapse is remarkably good for
all x. The agreement with the G-RT scaling form is
also remarkable for small x, but start to deviate from
the theoretical prediction when Z(r) approaches the iso-
static z̄ ≈ 2d plateau. The type of deviation is different
from each protocol, but is similar from one dimension
to the next for a given protocol. For larger x in the
near-contact region, the two protocols robustly produce
the same power-law growth, Z(r) ∼ (r − σ)1−α with
α ∼ 0.40(1) (Supplementary Fig. 3), which is not pre-
dicted by G-RT. Because the number of rattlers vanishes
with dimension neither of these phenomena can be as-
cribed to their presence. But because G-RT predictions
rely on the individual cages to be Gaussian, which pre-
sumably they are not [8–10], it is natural to ascribe the
discrepancy to the breakdown of that assumption.

At very large distances, the pair correlation function of
any disordered systems trivially has g(r À σ) = 1, which

corresponds to Z(r À 1) ≈ 2dϕ[(r/σ)d − 1]. Unsurpris-
ingly this scaling form captures well the behavior of Z(r)
for both protocols and all d at large r, but the range of
validity also extends with d (Supplementary Fig. 3). In
order to quantify this effect, we fit the curves of Z(r) for
r > σ using the form

Z(r) = C ′(r − σ)1−α + 2dϕ[(r/σ)d − 1)
]

. (B8)

When d grows, the region where the second term is much
bigger than the first is

C ′(r− σ)1−α < 2dϕ[(r/σ)d − 1) ∼ d 2dϕ(r− σ)/σ (B9)

hence (r−σ) > [σ C ′/(d 2dϕ)]1/α. The fitted values of C ′

indicate that the crossover point indeed decreases slowly
with d.

APPENDIX C: REPLICA THEORY
CALCULATIONS

The predictions of G-RT presented in this work are
based on earlier results [7, 11]. Yet because the calcu-
lations in Ref. [7] have only been explicitly carried out
for d = 3, and because different observables are consid-
ered, additional results are here presented. They are re-
ported in this section and incidentally provide a somehow
simplified derivation of the results of Ref. [7]. Nonethe-
less, reading this section requires a detailed knowledge
of Refs [7, 11], so the reader who is not interested in
the theoretical details can safely skip it. Note that as in
the main text, this section uses reduced units ε = 1 and
σ = 1.

1. General expressions

The approximation scheme used is based on [7,
Eq. (22) and (23)], which give the replicated free entropy
separated between the harmonic and the liquid contribu-
tions

S(m,A; T, ϕ) = Sh(m,A) + Sliq(T/m,ϕ)

+ 2d−1ϕyHS
liq (ϕ)G(m,A;T ) , with

G(m,A; T ) = d

∫ ∞

0

dr rd−1 [q(A, T ; r)m − e−βmv(r)]

(C1)

for m replicas at temperature T , in a Gaussian
cage of variance 2A. The function q(A, T ; r) =∫

ddr′γ2A(~r′)e−βv(|~r−~r′|) is defined in [7, just after
Eq. (16)] where γ2A is a normalized and centered Gaus-
sian of variance 2A, and yHS

liq is the HS cavity function.
Introducing bipolar coordinates, as in [11, Appendix
C.2.a], we obtain the generalization of [11, Eq. (C16)]
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Supplementary Figure 3: Growth of the isostaticity z̄ ∼ 2d (solid lines) plateau with d=3–10 for (a) HS at p = 1010 and (b)
SS at e ∼ 10−20. The HS-SS contact regime (c)-(d) collapses remarkably well for all d, and the G-RT predictions (red line)
are similarly accurate as in d = 3. The plateau height also consistently decay from d=3 to 8 (insets). (e)-(f) The HS-SS
quasi-contact power-law growth is also robustly conserved, with a constant α = 0.42(2) (blue line). The fit to Eq. (B8) is also
provided (green line). (g) The quasi-contact coefficient C′ is such that the region where this regime can be observed shrinks
with increasing d.
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Supplementary Figure 4: (a) Fraction of rattlers in HS com-
pressions (dashed line) and in SS energy minimizations from
above (solid line). The fraction of particles left outside of the
force network, the rattlers, also vanish with increasing d. For
both protocols, the results suggest their fraction disappears
exponentially with d. (b) Diminishing fraction of 3-member
force loops (triangle) and growing fraction of 4-member force
loops (square) with d for the two protocols. The force net-
work, which is another observable for comparing the jammed
packings, supports their structural similarity. The length of
the force loops is also a simple measure of structural correla-
tions. In the mean-field high d limit these loops are expected
to become increasingly large, as the structural correlations
vanish. The decrease in the fraction of 3-member loops and
the growth of the fraction of 4-member loops, accompanied
by a constant growth of the average length of the loops, is
consistent with this scenario.

to the soft sphere potential v(r) = (1− r)2θ(1− r)

q(A, T ; r) =
∫ ∞

0

du e−βv(u)
(u

r

) d−1
2 e−

(r−u)2

4A√
4πA

×

×
[
e−

ru
2A

√
π

ru

A
I d−2

2

( ru

2A

)]
.

(C2)

The above equations (C1) and (C2) are the starting
point of all the needed replica calculations for our anal-
ysis, and because we focus on the “jamming limit” of
these equations, we take T → 0 with τ = T/m and
α = A/m held constant [7]. In Ref. [7] this limit was
taken using a simplified form of Eq. (C2) for d = 3, but
we here generalize the calculation to arbitrary d. The
crucial observation [11, Eq. (C21)] is that when z →∞,
e−z

√
2πzIn(z) → 1. In the jamming limit the term in

the second line of Eq. (C2) therefore disappears, be-
cause A → 0 while r and u are of order 1. The re-
maining integral can then be evaluated via the saddle
point approximation, because both β and 1/A diverge.
Consider first the case r < 1. Assuming that the sad-
dle point u∗ < 1, one has to maximize the function
−β(1−u)2− (r−u)2/(4A) which consistently maximizes
u∗ = (4βA + r)/(1 + 4βA) = (4α + τr)/(4α + τ) < 1.
Consider next the case r > 1. Assuming that in this
case u∗ > 1, we have v(u) = 0 and we thus consistently
find u∗ = r > 1. Replacing these expressions for u∗ in
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Eq. (C2) and taking the jamming limit we obtain

q(A, T ; r)m → e−
(1−r)2

4α+τ θ(1−r) , (C3)

and Eq. (C1) reduces to

S0(α, τ ; ϕ) = −d

2
[log(2πα) + 1] + Sliq(τ, ϕ)

+ 2d−1ϕyHS
liq (ϕ)G0(α, τ) ,

G0(α, τ) = d

∫ 1

0

dr rd−1 [e−
(1−r)2

4α+τ − e−
(1−r)2

τ ] ,

(C4)

which replaces [7, Eqs. (D3) and (D4)].
The approach to jamming from above is described by

the small τ limit [7, Appendix D.2]. In this limit we can
consider the SS Mayer function as a small perturbation of
the HS one and use standard liquid perturbation theory
to write

Sliq(τ, ϕ) = SHS
liq (ϕ)+d 2d−1ϕyHS

liq (ϕ)
∫ 1

0

dr rd−1e−(1−r)2/τ .

(C5)
Plugging this result in Eq. (C4) we then get

S0(α, τ ;ϕ) = −d

2
[log(2πα) + 1] + SHS

liq (ϕ)

+ 2d−1ϕyHS
liq (ϕ)d

∫ 1

0

dr rd−1 e−
(1−r)2

4α+τ .

(C6)

Note en passant that the cancellation of the second term
in Eq. (C5) with a corresponding term in G0(α, τ) is not
surprising, as stated in [7, Appendix D.2], but has a deep
physical interpretation. Indeed, Eq. (C4) shows that the
“bare” SS potential e−(1−r)2/τ is modified around jam-
ming by the presence of m − 1 additional replicas (with
m → 0) that “renormalize” it to e−(1−r)2/(4α+τ), as ob-
tained in Eq. (C3). The crucial point is that the latter
potential does not have a singularity when τ → 0, ensur-
ing a smooth crossover and appropriate scalings around
jamming.

2. The energy prefactor

Starting from Eq. (C6) and repeating the calculations
of Ref. [7, Appendix D.2], we finally obtain the quadratic
scaling of the energy as a function of ∆ϕ when approach-
ing jamming from above. The general expression for the
prefactor is then easily obtained. A further simplification
is obtained by assuming that α is small at the jamming
point, and developing the resulting expressions in powers
of
√

α [11]. Doing so and optimizing over α and τ , one

finally obtains

√
α(ϕ) =

1
2dϕyHS

liq (ϕ)

√
4
π

,

ΣHS
0 (ϕ) = −d log

( √
8

2dϕyHS
liq (ϕ)

)
+

d

2
+ SHS

liq (ϕ) ,

S1(ϕ) =
d π

32
[2dϕyHS

liq (ϕ)]2 ,

τ(ϕ) = −ΣHS
0 (ϕ)/(2S1(ϕ)) ,

e(ϕ) = [ΣHS
0 (ϕ)]2/(4S1(ϕ)) = d τ2/(8α) .

(C7)

The second line recovers the result of Ref. [11, Eq. (77)].
The glass close packing point ϕGCP [11], which is defined
by the complexity ΣHS

0 (ϕ) = 0, is reported in Fig. 1. The
first line shows that

√
α(ϕGCP) is indeed very small, be-

ing ∼ 0.01 in d = 3 and decreasing with dimension. Lin-
earizing the last line around ϕGCP and using that ΣHS

0 (ϕ)
vanishes linearly, one obtains the quadratic scaling of the
energy and its prefactor [7]. G-RT results in Supplemen-
tary Fig. 1 have been obtained from this procedure, using
the Carnahan-Starling equation of state in d dimensions
for the HS liquid [11, Eq. (82)].

A last remark on the energy prefactor is in order. G-RT
results in a discrepancy between the pressure computed
from thermodynamics and that computed from the struc-
tural (see Refs. [11, Eq. (89)] and [7, Section VII.B]).
This difference might have its origin in the fact that only
two-body effective replica interactions are kept in this
treatment. Indeed in the limit d → ∞, where this ap-
proximation should be exact, the discrepancy disappears.
It has also been observed in Ref. [7, Section VI.B] that
a much better agreement between theory and numerical
data is obtained if the distance from jamming ∆ϕ is cor-
rected to account for this discrepancy. The correction
factor obtained from the theory corresponds to the fac-
tor needed to impose the equality in [11, Eq. (89)], so
rescaling ∆ϕ is equivalent to rescaling e0. The rescaled
predictions are also reported in Supplementary Fig. 1.

3. Scaling functions

To complete the analysis we compute the scaling func-
tions Z±(x) predicted by G-RT. Consider first the HS
case, approaching jamming from below. The contact
peak of g(r) on approaching jamming is given by [11,
Eq. (90)]

g(r) = g(1)∆0

(
2d−1ϕg(1)

√
π

2
(r − 1)

)

=
p

2d−1ϕ
∆0

(
p

√
π

2
(r − 1)

)
,

(C8)

where ∆0(x) = 1 − √πxex2
[1 − erf(x)]. The validity of

the thermodynamic relation p = 1 + 2d−1ϕg(1) is here
assumed. As we discussed above, this relation is violated
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by the theory, but the correction is here unimportant. If
one does not want to use this relation, it is sufficient to
replace p → 2d−1ϕg(1), but in the end this substitution
does not affect the prediction for the scaling function.

Integrating Eq. (C8) using Eq. 1 from the main text
we get, after changing the variable to y = p

√
π

2 (s− 1)

Z(r) = 2d p

∫ r

1

ds sd−1 ∆0

(
p

√
π

2
(s− 1)

)

= 2d
2√
π

∫ p
√

π
2 (r−1)

0

dy

[
1 +

y

p

2√
π

]d−1

∆0(y) .

(C9)

We notice now that p ∼ 1/∆ϕ and r − 1 ∼ ∆ϕ. The
integration is therefore over an interval of order 1. The
first term in the integrand can be neglected because for y
of order 1, so this term goes to 1 when ∆ϕ → 0. Finally
we obtain in the contact region

Z(r)
2d

=
2√
π

∫ √
π
2 x

0

dy∆0(y)

= 1− e
π
2 x2

[
1− erf

(√
π

2
x

)]
≡ ZRT

− (x) ,

(C10)

where x = p(r− 1). This prediction is tested in Fig. 3 of
the main text and in Supplementary Fig. 3.

Next consider the SS case approaching jamming from
above, working in the jamming limit. T → 0 with τ =
T/m and α = A/m. In this case the calculation starts
from [7, Eqs. (17) and (48)]. Using bipolar coordinates
we can write

g(r)
yHS
liq (ϕ)

= e−βv(r)

∫ ∞

0

du q(A, T ; u)m−1
(u

r

) d−1
2 ×

× e−
(r−u)2

4A√
4πA

[
e−

ru
2A

√
π

ru

A
I d−2

2

( ru

2A

)]
.

(C11)

We now need to improve Eq. (C3) by considering the
quadratic corrections around the saddle point, which for
r < 1 leads to

q(A, T ; r) ∼ e−
(1−r)2

m(4α+τ)

[
4α + τr

r(4α + τ)

] d−1
2 1√

1 + 4α/τ
.

(C12)

Plugging Eq. (C12) in Eq. (C11), dropping as before the
last term in square brackets in Eq. (C11), and evaluating
the integral via the saddle point approximation including
quadratic corrections, we find for r < 1 that

g(r)
yHS
liq (ϕ)

= e−
4α+τ

τ2 (r−1)2
(

1 +
4α

τ

)
×

×
[
1
r

(
1 + (r − 1)

(
1 +

4α

τ

))]d−1

×

× θ

(
1 + (r − 1)

(
1 +

4α

τ

))
.

(C13)

Plugging this result in Eq. (1), and assuming that we
approach jamming from above, so that τ ¿ 4α, we obtain
for r > 4α

τ+4α ∼ 1− τ
4α that

Z(r) = yHS
liq (ϕ)d 2dϕ

4α

τ

∫ r

1− τ
4α

ds sd−1×

×
[
1
s

(
1 + (s− 1)

4α

τ

)]d−1

e−
4α
τ2 (s−1)2 .

(C14)

Changing variables to y = (1 − s)4α
τ and using the first

line of Eq. (C7) gives

Z(r) = d

√
4

πα

∫ 1

(1−r) 4α
τ

dy (1− y)d−1e−
y2

4α . (C15)

Although this result is already the desired scaling func-
tion, we can further simplify it by noting that α is small
to write

Z(r) = d

√
4

πα

∫ ∞

(1−r) 4α
τ

dye−
y2

4α

= 2d

[
1− erf

(
2
√

α

τ
(1− r)

)]

= 2d

[
1− erf

(√
d

2e
(1− r)

)]
,

(C16)

where in the last line we used the last line of Eq. (C7).
The resulting prediction

ZRT
+ = 1− erf(x) (C17)

is tested in Fig. 3 of the main text and in Supplementary
Fig. 3.
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