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The mechanical properties of jammed packings depend sensitively on their detailed local structure.

Here we provide a complete characterization of the pair correlation close to contact and of the force

distribution of jammed frictionless spheres. In particular we discover a set of new scaling relations that

connect the behavior of particles bearing small forces and those bearing no force but that are almost in

contact. By performing systematic investigations for spatial dimensions d ¼ 3–10, in a wide density range

and using different preparation protocols, we show that these scalings are indeed universal. We therefore

establish clear milestones for the emergence of a complete microscopic theory of jamming. This

description is also crucial for high-precision force experiments in granular systems.
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Introduction.—The jammingphenomenon is ubiquitous—
candies [1], coal [2], and colloids [3] all can jam, but
its microscopic universality remains debated even for the
most ideal of systems. Like any other phase transition, the
jamming transition can be approached from the unjammed
phase, e.g., by compressing hard spheres (HSs) [4], or
from the jammed phase, e.g., by minimizing the energy of
soft spheres (SSs) [5]. Yet these two complementary
approaches have mostly been developed independently
from each other (see Ref. [6] for HSs and Refs. [7,8] for
SSs). Unlike standard phase transitions, however, the jam-
ming transition is a nonequilibrium phenomenon that hap-
pens deep inside the glass phase [9,10], and therefore
different protocols generate different packings, which may
result in conflicting observations. Indeed, all agree that
marginally stable packings of frictionless spheres average
2d force-bearing contacts per particle [8], but jammed
packings’ density [6,11–14], parts of their microstructure
[6,15,16], as well as their given name [6,17] are contentious.
Although the jamming ‘‘j’’ point was proposed to be unique
in the thermodynamic limit [5,18], there is a growing con-
sensus that jamming occurs over a range of ‘‘j’’ points
[6,7,9,13,14,17]. Yet various physical origins have been
attributed to the jamming density variation, including struc-
tural correlations in the initial configuration [7], and the
presence of small crystalline regions only detectable by
subtle order metrics whose minimization should result in a
single ‘‘maximally random jammed’’ state [6,17]. Others
have proposed the intrinsic existence of a range of densities
over which packings with an identically disordered structure
could be found [9,13,14]. A power-law growth of the num-
ber of almost-touching particles near jamming has also been

identified numerically, but different exponents have been
found for HSs [4] and SSs [15]. If there is microscopic
universality, it has yet to fully emerge.
In this Letter we bring a different point of view to the

problem by systematically investigating how the jamming
limit is approached from both sides of the transition and
by varying the dimensionality of space from d ¼ 3 to 10.
This approach allows us to obtain a series of important
results. (1) Increasing d � 4 suppresses crystallization
[19,20] and the ‘‘spurious’’ contribution of ‘‘rattlers.’’ We
can thus show that random jammed packings of monodis-
perse spheres with identical near-contact structural prop-
erties can be obtained over a range of densities (thus
confirming results in d ¼ 3, 4 [4,14,17,19,21]), and that
this range broadens with increasing d. (2) We confirm an
earlier suggestion that two exponents � and �, correspond-
ing to different physical regimes, control the mechanical
stability of jammed packings [22]. The first describes the
‘‘quasicontact’’ regime in which particles are separated by
very small gaps h, and whose number scales as h�� for
small h; the second describes the tail of the ‘‘contact’’
regime, where the number of particles bearing a small
force f scales as f�. (3) We also provide a complete
characterization of the microstructure of jammed packings.
We show that matching the two above regimes provides
scaling relations between the exponents and nontrivial
scaling functions. We thus conclude that the mechanical
stability of jammed packings is related to their very com-
plex contact microstructure. (4) We find these results to be
universal in the sense that they are robust to changes in
preparation protocol, packing density, and, in particular,
spatial dimension.
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The observation that jammed packings’ properties are
independent of d suggests that a mean-field theory should
be able to capture the jamming phenomenology [18,23,24].
One such treatment, the Gaussian replica theory (G-RT)
[10,13], unifies the description of the glass transition and of
jamming by exploiting an analogy with discrete random
optimization problems [9,25]. In this treatment, the HS and
SS approaches to jamming are unified under the assump-
tion that jammed states are the infinite pressure (for HSs)
or zero temperature (for SSs) limit of long-lived metastable
glassy states [10,13]. The theory predicts a growing jam-
ming density range with d [13], the existence of scaling
relations for energy and pressure relating the two sides of
the jamming transition [10], and makes structural scaling
predictions that are remarkably satisfied at short distances
[10,13]. Yet we show here that (5) G-RT completely fails to
describe the structural regime that controls jammed pack-
ings’ mechanical stability. Our results (1)–(5) will thus
guide both theory and experiments (through high-precision
force measurements [26]) towards a better understanding
of the jamming transition.

Packing generation.—We consider a system of N �
8000 identical spherical particles of diameter � in a fixed
volume V, under periodic boundary conditions. The pack-
ing fraction ’ ¼ NVdð�=2Þ=V, where Vdð�=2Þ is the vol-
ume of a d-dimensional ball of radius �=2, measures the
fraction of space occupied by particles. Jammed packings
are prepared using two different numerical protocols (see
Supplemental Material [27] for details and reduced units
definitions). (i) Approaching jamming from densities
below it by Lubachevsky-Stillinger compressions of HSs
undergoing Newtonian dynamics while � grows at a fixed
rate � ¼ _� [4]. The compression, which is tuned to prevent
crystallization [20,28], stops when particles are very near
contact, defining the packing fraction ’�

p at which the HS
reduced pressure becomes infinite. (ii) Approaching
jamming from densities above or below it by minimizing
the energy E of a random configuration of harmonic SSs.
Initial bounds�� and �þ that bracket jamming are evolved
iteratively by choosing an intermediate value �m and
minimizing the energy of the current configuration at �þ
(procedure from above) or at �� (procedure from below).
The final jammed configurations at the onset of E � 0 have

’#
e from above and ’"

e from below. From above, the energy
vanishes with e ¼ E=N � �’2 and the static pressure
P� �’, where �’ is the distance from jamming [5].

We find the initial�� to have no measurable effect on’"
e.

We formally define ’min
e ¼ min��’

"
eð��Þ, but any reason-

able �� results in the same final density. By contrast, ’#
e is

independent of��, but strongly depends on�þ (Fig. 1). We

therefore define ’max
e ¼ max��’

#
eð��Þ. A practical way of

constructing both ’min
e and ’max

e is to run the energy mini-
mization (respectively from below and from above) starting

from �� ¼ 0 and �þ large enough to saturate ’#
e to its

maximum. Intermediate packing fractions can then be

obtained by reducing �þ (Fig. 1). By varying �� in proto-
col (ii) we can thus construct packings over a density
interval ½’min

e ; ’max
e � that roughly corresponds in protocol

(i) to ½’��
p ; ’�þ

p �with �� � 3� 10�2 and �þ � 3� 10�4

(larger � generate mechanically unstable packings). The
resulting density range is remarkably found to grow steadily
from about 2% in d ¼ 3 to nearly 10% in d ¼ 11 (Fig. 1).
We therefore confirm the similar observation made for
d ¼ 3 binary mixtures [14], where the limited available
density range and the subtle crystal order had left some
room for debate [6]. Note that this range is achieved by
only implementing procedures that compact liquid configu-
rations. Reference [21] has shown that enlarging the space
of procedures enlarges the range of jammed packings, but
the resulting packings likely have a different microstructure.
The similarity between the jamming density results of

the two protocols suggests an underlying physical connec-
tion between them. G-RT indeed predicts that packings
exist over a finite packing fraction range, whose upper
limit is the ‘‘glass close packing’’ ’GCP [13]. By analogy
with random combinatorial optimization problems [25],
the densest packing at ’GCP is conjectured to require a
time � expðNaÞ to generate, the exponent being possibly
a � ðd� 1Þ=d, based on a nucleation analysis. The maxi-
mal density that can be reached by the protocols above,
which both run in polynomial time in N, should therefore
be strictly smaller than ’GCP. Figure 1 shows it to be the
case for all d, in agreement with G-RT.
Scaling functions.—To determine the universal structure

of disordered jammed structures, we consider the pair
correlation function gðrÞ ¼ ð�NÞ�1hPi�j�ðrþ ri � rjÞi,
which is the only relevant structural correlation in high

FIG. 1 (color online). The extrapolated jamming density ’�!0
p

following the protocol described in Ref. [28] is extended to
higher d (solid line and crosses), and compared with the G-RT
prediction for ’GCP (dashed line). (top inset) The range of
jamming densities ’�

p (squares) is compared to ’max
e (circles)

and ’min
e (triangles). Note that ’max

e � ’�¼3�10�4

p and ’min
e �

’�¼3�10�2

p . (bottom inset) The d ¼ 3 increase of ’#
e with �þ, in

terms of the initial effective packing fraction.
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d fluids [29]. For numerical convenience, we compute the
cumulative structure function

ZðrÞ ¼ �Sd�1

Z r

0
dssd�1gðsÞ; (1)

where Sd�1 is the surface of a d dimensional ball of unit
radius. The function ZðrÞ thus provides the average number
of neighbors within r of a given particle. Rattlers are first
excluded from the analysis (Supplemental Material [27]),
but we come back to this point below.

For both protocols, ZðrÞ jumps from 0 to a plateau at z
on a scale proportional to the distance to jamming �’,
where z is the isostatic average number of contacts 2d plus
a correction z� 2d / �’� (Fig. 2). For HSs, we find � ¼
0:36ð2Þ, while � ¼ 0:53ð3Þ for SSs (Fig. 3) [5]. The
approach to the isostatic plateau is characterized by a
long power-law tail with exponents � ¼ 0:28ð3Þ for HSs
and � ¼ 0:42ð2Þ for SSs, but the exponent is independent
of d for a given model. The plateau is extended by a second
power-law regime that corresponds to particles in ‘‘quasi-
contact,’’ carrying no force at jamming. We find that in
this regime the scaling is the same for both protocols,
growing as ZðrÞ � z / ðr� �Þ1�� with a universal

exponent � ¼ 0:42ð2Þ until it reaches the trivial large r
regime. Interestingly, the two power-law regimes can be
matched by a scaling function H�, which defines an
additional intermediate regime. This intermediate regime
shrinks to a point at jamming, but smoothly crosses over
from one power-law regime to the other at finite �’.
Consistency therefore sets clear scaling requirements for
the different regimes (see Supplemental Material [27] for
scaling analysis) as detailed in Fig. 2, and verified in Fig. 3.
Force distribution and mechanical stability.—The con-

sequences of these universal scaling relations on mechanical
properties can be gleaned from the probability distribution
of interparticle forces f. Here again, we consider the cumu-

lative distribution GðfÞ ¼ Rf
0 Pðf0Þdf0 rather than the pair

force distribution PðfÞ, for numerical convenience.

For HSs approaching jamming, the average force f / p.
In the contact regime the force and distance distributions
are also related through a Laplace transform (Supplemental
Material [27]) [4]. The low-force distribution is thus
consistent with GðfÞ / f1þ� and � ¼ 0:28ð3Þ. For SSs
approaching jamming from above, the pair potential sets
the relation between the force and the pair distributions
[30] (Supplemental Material [27]). Here again, the low-
force tail is consistent with � ¼ 0:42ð2Þ. For both proto-
cols, however, the regime intermediate between contacts
and quasicontacts results in deviations from this power-law
decay at very weak forces away from jamming.
The large force regime has been thoroughly studied

[4,5,18,30–33], but the weak force distribution is much
less well characterized. It has been proposed by Wyart
[22] that� � 1=ð2þ �Þ is required formechanical stability.
Both the SS values [� ¼ 0:39ð1Þ, � ¼ 0:42ð2Þ] and the HS
ones [� ¼ 0:42ð2Þ, � ¼ 0:28ð3Þ], however, indicate a slight
violation of this condition. A generalized stability condition
of the form � � ð1� �=2Þ=ð2þ �� �=2Þ [22] is consis-
tent with our findings for � * 0:2, but a direct test of this
extended relation is beyond the scope of the current analysis.
Rattlers.—Rattlers, i.e., particles with no mechanical

contacts, must be considered before concluding that the
dimensional and protocol robustness of these results
strongly support a universal microscopic description of
jamming. Because their fraction rapidly decreases with
increasing d (Supplemental Material [27]) [19], and their
structural contribution is clearly distinct from that of the
other particles when �’ ! 0, it is reasonable to remove
them from the analysis. Rattlers indeed play essentially no
role in the scaling regimes in high d, while in low d, their
inclusion introduces noise in ZðrÞ and GðfÞ that obscures
the scaling relations, which may explain why � � 0:5 was
obtained in Ref. [15]. Removing the rattlers reveals the
robust relationship between microstructure and mechanical
properties, in support of jamming having a critical dimen-
sion dc ¼ 2 [18,24].
Comparison with microscopic theory.—G-RT, the only

available first-principles theory of jammed packings,

FIG. 2 (color online). Schematic of ZðrÞ when approaching
jamming from above (a) with protocol (ii), and from below (b)
with protocol (i). Three distinct scaling regimes can be identi-
fied. The first regime is related to the growth of ZðrÞ from 0 to z.
It corresponds to interparticle gaps h ¼ jr� �j ��’, and
hence to particles that are in contact when �’ ! 0. The last
regime corresponds to gaps h that remain finite for �’ ! 0.
These particles remain separated at jamming, but these small
gaps, ZðrÞ � z / h1��, form a ‘‘quasicontact’’ regime. The
intermediate regime corresponds to gaps h��’�. It matches
the two other regimes and disappears when �’ ! 0.
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provides predictions for the contact regime scaling func-
tion Z�ðxÞ [10,13] (Supplemental Material [27]). We find
the form of Z�ðxÞ to be extremely accurate when x is of
order 1, but G-RT fails to capture the ensuing power-law
regimes (Fig. 3). G-RT indeed predicts an exponent � ¼ 0
for both protocols, and completely misses the power-law
divergence related to �, predicting � ¼ 0. A similar de-
viation is observed at weak forces. We attribute these
discrepancies to the Gaussian assumption for the cage
form of G-RT, which has recently been found to be erro-
neous in dense disordered fluids [34,35]. This non-
Gaussian structure also naturally suggests a microscopic
explanation for the breakdown of the normal-mode decom-
position of jammed states [36,37]. Including a non-
Gaussian cage to RT ought to provide a better mean-field
understanding of the jamming phenomenology.

Conclusions.—Our results show that the jamming termi-
nology controversy should be resolved by replacing the j
point [5] with the j line [9,13], and by distinguishing a
range of maximally random jammed packings from their
partially crystallized counterparts [6,17,21]. They also
reveal that the contacts’ complex microstructure in jammed
packings is characterized by universal, well-defined scaling

regimes and by their corresponding scaling functions. We
give precise numerical predictions for the scaling expo-
nents, and show that the scaling functions are related to
the force probability distribution. These specific predictions
can be tested in soft matter and granular experiments. A
preliminary investigation indeed examined the scaling of the
peak of the pair correlation function [3], but our compre-
hensive predictions can help experimentalists access the full
scaling of ZðrÞ andGðfÞ. This feat should be possible once a
force resolution of �5% �f is experimentally achieved [26].
Finally, it is worth noting that the present study was

limited to temperature T ¼ 0 in the sense that no thermal
motion is allowed in SSs and that for HSs the energy
interaction scale is infinite compared to T. At finite T, the
jamming transition is blurred [10], but vestiges of the scal-
ing relations should remain visible [3]. Future work will
detail how temperature and its associated anharmonicities
affect the T ¼ 0 scaling relations identified here [10,36].
We acknowledge discussions with S. Torquato and

S. Nagel. The European Research Council has provided
financial support through ERC Grant agreement
No. 247328. P. C. acknowledges National Science
Foundation support No. DMR-1055586.

FIG. 3 (color online). Scaling of the cumulative structure function ZðrÞ and the cumulative force distribution GðfÞ in d ¼ 3 upon

approaching jamming from above (a) by SS energy minimization (where e / j�’j2 ! 0 and " ¼ ffiffiffiffiffiffiffiffiffiffiffi
ed=2

p
), and from below (b) by HS

compression (where p / j�’j�1 ! 1). (1a) For diminishing e, the height of the plateau (inset) converges to the isostatic value with
� ¼ 0:53ð3Þ. (2a) The small r < � regime shows the ‘‘contact’’ scaling function ZþðxÞ, which agrees well with the G-RT prediction
(red line). (3a) Rescaling ZðrÞ using� ¼ ð1þ �Þ=ð2þ �� �Þ and 	 ¼ �� highlights the behavior of the scaling function jH�ðxÞ �
H�ð1Þj � 1:2x (brown lines—intermediate gray) along with the � ¼ 0:42ð2Þ (red line—light gray) and the � ¼ 0:39ð1Þ (blue line—
dark gray) power-law regimes. (4a) GðfÞ, with power-law tail exponent � ¼ 0:42ð2Þ (dashed line). (1b) For increasing p, ZðrÞ grows
on an earlier scale r� �� p�1 to a plateau at the isostatic value, whose height (inset) decays with � ¼ 0:36ð1Þ. (2b) The small r� �
regime shows the ‘‘contacts’’ scaling function Z�ðxÞ, which agrees well with the G-RT prediction (red line). (3b) Rescaling ZðrÞ using
� ¼ ð1þ �Þ=ð2þ �� �Þ and 	 ¼ �� highlights the behavior of the scaling function jH�ðxÞ �H�ð1Þj � 6x (brown lines—
intermediate gray) along with the � ¼ 0:28ð3Þ (red line—light gray) and � ¼ 0:42ð2Þ (blue line—dark gray) power-law regimes. (4b)
GðfÞ, with power-law tail exponent � ¼ 0:28ð3Þ (dashed line), compared with the G-RT prediction (solid line).
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