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Numerical simulations are revealing general properties of jammed states of matter.
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The study of jammed systems began as a culinary cu-
riosity in 1727, when the Reverend Stephen Hales stud-
ied how peas pack when compressed in an iron pot [1].
Fill a pot with peas and you can run your hand through
them, because they can flow out of the way much like a
liquid would. But as pressure, and thus the density, is in-
creased, you will find that there is a critical point, above
which the peas “jam” into a stable amorphous solid. This
behavior is very general. Pretty much everything com-
posed of discrete chunks large enough that thermal fluc-
tuations can be ignored can go through a jamming tran-
sition: colloids in solution, a pile of sand, a jar full of
candies, even cars in a traffic jam.

Since the work of Hales, and at an accelerating pace
since the late 1950s, jamming has emerged as a fasci-
nating research topic and as a paradigm for studying
the formation of amorphous solids, in particular, glasses
[2]. Many experimental techniques have been applied to
the study of jammed states. However, experimentally,
it is extremely difficult to access the complex dynamics
of systems very near the jamming transition. Instead,
researchers increasingly rely on numerical simulations,
which allow them to explore situations extraordinarily
close to the jamming threshold. Unfortunately, simula-
tions are limited to a finite (and small) number of parti-
cles. One kilogram of beach sand can easily contain 30
billion individual grains, far beyond the capabilities of
even the largest computing schemes. As a consequence
of such experimental and computational hurdles, a gen-
eral theory for the description of jammed systems is still
lacking.

By simulating the jamming behavior of finite-size sys-
tems, two papers in Physical Review Letters come to gen-
eral conclusions on the nature of jamming transitions
that may help shape a unified theory of jamming. Si-

mon Dagois-Bohy, at Leiden University in the Nether-
lands, and co-workers expose the pitfalls of interpreting
simulations in finite-size systems, showing that properly
jammed systems must be stable not only to compression
but also to shear [3]. In an independent but related pa-
per, Carl Goodrich, at the University of Pennsylvania,
Philadelphia, and co-workers investigate the scaling be-
havior of finite-size systems jammed under varying con-
straints and provide strong evidence that the jamming
transition can in fact be considered a phase transition
[4].
Dagois-Bohy et al. demonstrate that widely used simu-

lation approaches for finite numbers of particles can pro-
duce arrangements of packed particles which appear to be
jammed and yet will fall apart at the slightest shear. Such
simulations assume two-dimensional geometries with pe-
riodic boundary conditions, in which particles at the top
of the system press against those at the bottom, and
particles on the left side press against those on the right
(think of the surface of a torus). The results can be
easily generalized to three dimensions. Typically, to sim-
ulate the density increase that leads to jamming, spheres
are inflated until a nonzero pressure is achieved in the
system, a protocol that Dagois-Bohy and colleagues la-
bel compression-only. Until now, it has been widely be-
lieved that this condition corresponds to a jammed state,
i.e., one that is stable to both compression and shear.
And, indeed, Dagois-Bohy et al. found that this ap-
proach yields packings that are stable to compression,
as evidenced by the fact that these arrangements have
positive bulk moduli: increased pressure results in de-
creased volume. However, when they subjected these
seemingly jammed systems to shear stresses they found
that an alarmingly large number of them were unsta-
ble and simply fell apart. Worse yet, the probability
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FIG. 1: Pictorial energy (U) landscape for a finite-size set
of soft spheres for which thermal fluctuations can be ne-
glected. | r〉 denotes the degree of freedom of particle posi-
tions, and ∆L the deformation of the shape of the simulation
box. Dagois-Bohy et al. show that jammed states identified
by compression-only (CO) methods minimize the energy with
respect to the particles’ positions only and may be unstable
to shear. Shear-stabilized packings (SS) minimize the energy
with respect to both particle positions and the box shape and
are thus properly jammed. Goodrich et al. analyze how the
properties of shear- and compression-stable states scale with
size, finding the evidence that jamming can be described as a
true phase transition. (APS/Alan Stonebraker)

of finding improperly jammed systems approached unity
for simulations carried out at vanishingly small pressures,
close to the jamming threshold.

How can this be? After all, a finite global pressure
means that there is an energy cost associated with mov-
ing any particle within the system, and thus the sys-
tem should be stable to shear stresses. The insight of
Dagois-Bohy et al. was to realize that shear is created
not only by the movement of individual particles within
the simulation volume but also by a deformation of the
boundaries of the volume itself. This deformation is an
additional degree of freedom—one whose energy has not
been accounted for and minimized in the simulation, as
illustrated in Fig. 1. As such, it should be no surprise
that these packings can be unstable to shear. To remedy
this problem Dagois-Bohy and colleagues introduce an
elegant and simple algorithm that they term shear stabi-
lized, which allows the boundaries of the simulation box
to deform as part of the energy minimization, leading
to slightly nonsquare unit cells. By this trick, they are
able to pinpoint those jammed packings that are stable
to both compression and shear.

In their work, Goodrich and colleagues have turned the
limitations of numerical simulations of finite-sized sys-
tems to their benefit. By varying the size of their simu-
lations, and requiring both shear and compression stabil-

ity for proper jamming, they provide insights into the na-
ture of the jamming transition that fixed-size simulations,
even for an arbitrarily large size, cannot deliver. For a
system of N particles in d dimensions, jamming means
that every degree of freedom (with the exception of the d
degrees of freedom related to bulk translations) must be
constrained. In a jammed system these constraints are
provided by contacts between particles. A naive account-
ing would lead to d · N − d contacts. Goodrich and col-
leagues demonstrate that this isn’t enough. They demon-
strate that in finite-sized systems one additional contact
is needed for the system to have a positive bulk modu-
lus (as in the compression-only packings above) and yet
another 1

2d · (d + 1) − 1 contacts are needed to have a
positive shear modulus (as in the shear-stabilized pack-
ings above).
They tested these predictions by simulating two- and

three-dimensional systems ranging from the very small
(N = 64) to the relatively large (N = 4096). Simulating
systems under smaller and smaller pressures, and thus
closer and closer to the jamming transition point, they
found that the onset of stable jamming corresponds pre-
cisely to the number of contacts they predicted. As they
increased the density above jamming, they showed that
the bulk properties of their packings, such as the bulk
and shear moduli, all scale with the excess number of
contacts between particles. Remarkably, for all system
sizes they are able to collapse these dependencies onto a
master curve by scaling the data with exponents deter-
mined by their counting argument. Such finite-size scal-
ing is the hallmark of a phase transition [5]. The idea that
jamming is a collective phenomenon related to an under-
lying phase transition has emerged in recent work [2, 6, 7]
and the paper by Goodrich et al. further supports this
claim. Their results are consistent with jamming being
either a random first-order or a mean-field second-order
transition.
The papers of Dagois-Bohy et al. and Goodrich et al.

deliver two key messages. Dagois-Bohy and colleagues
show that properly jammed states must be stable to
both compression and shear, raising a potentially trou-
bling question: Will the existing body of computational
work, overwhelmingly based on compression-only meth-
ods, stand the test of shear-stabilized simulations and,
more importantly, of jamming experiments? Given the
observations of Dagois-Bohy et al., it will be important
to reexamine older theoretical results. Goodrich and col-
leagues support the important conclusion that jamming
is in fact a phase transition. The fact that it has taken
so long to reach such a sensible conclusion is indicative
of the extreme difficulty in describing systems for which
a well-defined statistical mechanics framework is not yet
available. Researchers will now be called to answer a set
of even harder questions: What will a mean-field the-
ory that describes jamming look like? Will it be based
on approaches that have proven useful for the study of
the glass transition, such as mode coupling [8], and the
replica method [9], or will it be something entirely differ-
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ent? Will a unifying theory emerge for the jamming and
glass transition?

While the horizons of physics have stretched to en-
compass the extremes of the universe, it is remarkable
that there are still fundamental puzzles awaiting us at
the bottom of a bucket of sand.
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