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Bond percolation in higher dimensions
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We collect results for bond percolation on various lattices from two to fourteen dimensions that, in the limit
of large dimension d or number of neighbors z, smoothly approach a randomly diluted Erdős-Rényi graph. We
include results on bond-diluted hypersphere packs in up to nine dimensions, which show the mean coordination,
excess kurtosis, and skewness evolving smoothly with dimension towards the Erdős-Rényi limit.
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I. INTRODUCTION

Percolation theory [1,2] asks if there is a connected path
across a system. Examples are water percolating through
ground coffee beans and forest fires spreading from tree to
tree.

Although this is an old subject, interest continues, including
in higher dimensions, where rigorous bounds on pc (the critical
concentration) have recently been established [3]. We denote
by z the number of initial bonds at any site of a particular
regular lattice (e.g., triangular net and simple cubic) before
bond dilution occurs (p = 1). It is convenient to define the
mean coordination 〈r〉 at the percolation point as

〈r〉 = zpc, (1)

which facilitates the comparison between various lattices in
various dimensions as the mean coordination 〈r〉 at percolation
varies much less than pc itself. A very simple argument
suggests that 〈r〉 = 2 at the transition as each site must have
one bond entering and one bond leaving to form a connected
pathway. While this is the most efficient scenario, it does not
happen quite this way in a random system for two reasons.
First, there is redundancy where there is more than one
connection between two points, leading to a loop. Loops
push the mean coordination 〈r〉 above 2, because at least
two sites with coordination 3 must be involved in forming
a loop. Second, there is irrelevancy where dead ends and
isolated regions are formed that would not carry a current
if the bonds were wires in a conducting network. Irrelevancy
pushes the mean coordination 〈r〉 below 2, as some sites are
singly coordinated. Both these situations are illustrated in
Fig. 1. We will see that there is a tendency for the effects
of redundancy and irrelevancy to cancel making 〈r〉 = 2 a
reasonable starting approximation for low dimensions d and/or
low initial coordination z. However, for very high dimension
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d or initial coordination z, the mean coordination number 〈r〉
approaches unity because of the preponderance of dangling
bonds. The result 〈r〉 = 2 at the transition can also be derived
by Maxwell-type constraint counting [4] of the number of
floppy modes [5,6] or residual degrees of freedom f in the
system.

Connectivity percolation can be regarded as a special case
(g = 1) of a larger class of problems having g � 1 degrees of
freedom per site. An example would be vector displacements
in two dimensions, where g = 2. For g � 2 such problems are
usually referred to as rigidity percolation [5,6].

Maxwell constraint counting [4] is more usually employed
in problems involving rigidity, but can also be applied to
connectivity percolation problems as a special case, with
g = 1. More generally, there are g degrees of freedom
associated with each site and z constraints are present (the
number of bonds at each site is assumed to be exactly z

everywhere initially) with probability p, so that

f = g − zp/2, (2)

which goes to zero at pc = 2g/z and hence gives the result
〈r〉 = 2g at percolation. Note that the number of floppy
modes is not exactly zero at the transition as fluctuations
in local coordination number allow for local redundancy
and irrelevancy, but nevertheless it has been shown that the
number of floppy modes at the transition is extremely low [7],
making 〈r〉 = 2g an unusually accurate approximation for
g � 2 (typically within 1%). For example, in the case of
rigidity percolation of a triangular net under bond dilution
Maxwell counting gives a result of 〈r〉 = 4, while numerical
simulations [7] find 〈r〉 = 3.961 ± 0.002, which is very close
to, but clearly less than, 4. However, the constraint counting
result 〈r〉 = 2 for connectivity percolation gets worse in higher
dimensions in which 〈r〉 = 1 is reached.

II. BETHE LATTICE

A useful universal guideline is provided by the Bethe lattice,
which is a treelike network that contains no loops [8,9]. For a
connected path there must be one way in from a previous layer
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FIG. 1. (Color online) Connected path in black across part of
a sample with redundancy via the red (dark gray) loop, which is
overconstrained with one redundant bond, and irrelevancy via the
green (light gray) region, which contains dangling ends that are not
involved in percolation.

and one of the remaining z − 1 ways out must be occupied, so
that pc = 1/(z − 1), a result that can be rigorously found [8].
Hence the mean coordination 〈r〉 at percolation is given by

〈r〉 = zpc = z/(z − 1). (3)

There is a binomial distribution of local coordination numbers
due to the random dilution, so the probability of a site having
r bonds present out of a total of z possible is given by

P (r) =
z∑

r=0

(
z

r

)
pr (1 − p)z−r (4)

and hence the nth moment 〈rn〉 is given by

〈rn〉 =
z∑

r=0

rnP (r), (5)

leading to the mean coordination

〈r〉 = zp (6)

and the square of the width �r given by

(�r)2 = 〈r2〉 − 〈r〉2 = zp(1 − p). (7)

For the Bethe lattices at the percolation threshold, this width
becomes

�r =
√

z(z − 2)

(z − 1)
. (8)

A particularly interesting limit is large z → ∞, where we
obtain what we will refer to as the Erdős-Rényi limit, reached
when percolation occurs upon bond dilution in a graph that
initially has N nodes, each one connected to every other node
[10] as N → ∞. In this limit

〈r〉 = �r = 1. (9)

In the limit that the number of nodes goes to infinity, the chance
of finding a loop becomes infinitesimally small and hence the
large-z Bethe lattice result is obtained. An example of a finite
Erdős-Rényi graph [10] is shown in Fig. 2.

III. A UNIVERSAL PLOT

It is convenient to combine all results for bond percolation
on various lattices as a plot of the mean coordination 〈r〉
against the width of the distribution �r , which is shown in
Fig. 3. The results for the two-dimensional (2D), 3D, and
hypercubic lattices are conveniently summarized with original
references in Ref. [11]. The two-dimensional results, shown

FIG. 2. Bond diluted finite Erdős-Rényi graph, where before
dilution every node was connected to every other node.

in red in Fig. 3, are from left to right, following the thin red
line, honeycomb, kagome, square net, and triangular net. The
general trend is higher initial coordination z to the right going
to lower initial coordination z to the left, which tends to the
isostatic point shown at (0,2).

The three-dimensional results, shown in blue, are from
left to right, following the thin blue line, diamond, simple
cubic, body centered cubic, and face centered cubic, with
the latter two close together but following the general trend
with higher initial coordination z to the right going to lower
initial coordination z to the left, which again tends to the
isostatic point at (0,2). Also included in Fig. 3 are the results
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FIG. 3. (Color online) Results for the mean coordination against
the width for 2D lattices (red triangles), 3D lattices (blue squares),
hypercubic lattices (black circles), and random hypersphere packings
(gray circles) at the percolation threshold. The straight lines joining
adjacent points are only for guidance of the eye. The thick green
line is the Bethe lattice result with the isostatic point at (0,2) and the
Erdős-Rényi result (1,1) shown as the large purple dot. The dashed
line shows the result of a 1/(z − 1) expansion [15] given in Eq. (11)
for hypercubic lattices.
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for bond-diluted hypercubic lattices from d = 2 up to d = 13
where the mean coordination 〈r〉 is obtained from (1) and the
width from (7).

The results for diluted noncrystalline hypersphere packings
were obtained from computer simulations of jammed con-
figurations of N = 262 144 monodisperse particles (in two
dimensions a 50-50 mixture of bidisperse particles with size
ratio 1.4:1 was used to avoid crystallization) as described
in Ref. [12]. The particles interact with a harmonic contact
potential defined as

V (r) = ε(σ − r)2�(σ − r), (10)

where σ is the particle radius, ε the energy scale of the poten-
tial, and r the distance between particles. Energy is minimized
at a given packing fraction via either a conjugate gradient [13]
or fast inertial relaxation engine [14] minimization technique.
Starting from a random configuration at a density well above
jamming and given two values of packing fraction that bracket
the jamming transition density, the jamming point is found
via a golden mean bisection search. Jamming is identified as
the packing fraction corresponding to the onset of nonzero
energy as derived from the potential (10). For the purposes of
percolation studies, two hyperspheres are said to be connected
neighbors if there is a nonzero overlap between them. We find
that the values of 〈r〉 and �r are rather insensitive to a (small)
distance from the jamming transition.

Note that both sets of high-dimensional results, for bond
percolation in hypercubic lattices and random hypersphere
packings, approach the Erdős-Rényi limit, as can be seen
from Fig. 3. The highest dimension explored of d = 13
for hypercubic lattices and d = 9 for random hypersphere
packings are already very close to the point (1,1). This is
because loops become less important in higher dimensions,
discussed next.

If we consider the mean and width of the percolation
variable r then the Erdős-Rényi limit is [from Eqs. (3)–(9)] the
same as the z → ∞ limit of the Bethe lattice (tree) result. The
tree is in turn the loopless limit of a general lattice and from
simple geometric path counting considerations, the loopless
limit is the large-z and, equivalently, the large-d limit of a
general lattice. The probability of two sites being joined by a
graph with n links will be proportional to pn

c . Now consider
all graphs with n steps. For the trees we have r = n/2 and
for all other graphs with a partial or full loop r > n/2. The
key observation is that in high dimensions, p goes like 1/d,
as can be seen for the Bethe lattice in Eq. (8). For example,
hypercubic lattices have z = 2d and for random packings z

is even larger. Therefore, as d → ∞ those diagrams with
r = n/2 overwhelmingly dominate and hence only the trees
contribute and the Erdős-Rényi limit is reached. While this is
not a formal proof, it demonstrates the plausibility of the result
and should form the basis for a formal mathematical proof.

For completeness, we include the results of Gaunt and
Ruskin [15], who performed a 1/(z − 1) expansion for bond
percolation on bond-diluted hypercubic lattices where z = 2d

and found that percolation occurs at

pc = σ
(
1 + 5

2σ 2 + 15
2 σ 3 + 57σ 4 + · · · ), (11)

where σ = (z − 1)−1. Note that the leading term is the Bethe
lattice result. We include this result in Fig. 3 as a dashed line,

which is seen to be very close indeed to the results of numerical
simulations (black dots) for hypercubic lattices with d � 3,
then deviating at d = 2 for the square lattice.

Another convenient way to monitor the approach of dilute
hypercubic lattices to the Erdős-Rényi limit is to track
the skewness γ1 and excess kurtosis γ2, which respectively
monitor the evolution of the asymmetry and the deviation
from Gaussian behavior of the distribution of contacts (for
a Gaussian distribution γ1 = γ2 = 0). These are defined in
terms of the moments of the distribution as

γ1 = 〈(r − 〈r〉)3〉
〈(r − 〈r〉)2〉3/2 , (12)

γ2 = 〈(r − 〈r〉)4〉
〈(r − 〈r〉)2〉2 − 3. (13)

For Bethe lattices they take the values

γ1 = 3 − 2〈r〉√〈r〉(2 − 〈r〉) , (14)

γ2 = 1

〈r〉(2 − 〈r〉) − 6(〈r〉 − 1)

〈r〉 . (15)

These are plotted as the solid lines in Fig. 4. In the limit of
a Bethe lattice with large z, the distribution of coordination
number becomes a Poisson distribution with p(r) = e−1/r!
and thus 〈r〉 = �r = γ1 = γ2 = 1. Note that for the Bethe
lattice, the skewness goes through zero at 〈r〉 = 3/2, which
corresponds to z = 3, and the excess kurtosis goes through ze-
ros at 〈r〉 = (9 ± √

3)6 = 1.211 and 1.789, which correspond
to z = 4 ± √

3 = 2.227 and 6.928, respectively.
The skewness and the excess kurtosis for the hypercubic

lattices can be obtained for the known values of pc from
Ref. [11] and using Eqs. (4) and (5), respectively. For the
binomial distribution, the skewness is

γ1 = 1 − 2p√
zp(1 − p)

(16)

and the excess kurtosis is

γ2 = 1

zp(1 − p)
− 6

z
(17)

and these are also plotted at the percolation threshold in
Fig. 4, which shows how they approach the Erdős-Rényi
limit in high dimensions, providing further evidence of the
relative unimportance of loops in connectivity percolation
in higher dimensions. Results for the skewness and excess
kurtosis can also be obtained from the expansion [15] given
in Eq. (11), coupled with Eqs. (14) and (15), and are shown
as the dashed lines in Fig. 4. Also shown in Fig. 4 are directly
computed results for the skewness and excess kurtosis for
bond-diluted random hypersphere packs at the percolation
threshold in higher dimensions. Again a similar trend towards
the Erdős-Rényi limit in high dimensions is very apparent.
All results for bond-diluted hypersphere packings at the
percolation threshold are tabulated in Table I.

These kinds of argument extend from percolation to a range
of other processes. Among them are other q-state Potts models
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FIG. 4. (Color online) Skewness [thick red (dark gray) line] and
excess kurtosis [thick green (light gray) line] as a function of the
mean coordination 〈r〉 for Bethe lattices at the percolation threshold.
Also shown are the skewness (triangles) and excess kurtosis (squares)
for hypercubic lattices as gray symbols and random hypersphere
packings as black symbols. The straight lines joining adjacent
symbols are guides to the eye. The Erdős-Rényi result (1,1) is shown
as the large purple dot. The dashed line shows the result of a 1/(z − 1)
expansion [15] given in Eq. (11).

(the q → 1 limit is bond percolation [16]), which include the
Ising model (q = 2). This was perhaps the first system for
which small 1/z was systematically exploited by Brout [17]
and Englert [18]. The limit 1/z → 0 gives mean field theory,
associated with the tree graphs of the linked-cluster many-body
theory. This is the starting point for a 1/z expansion involving

TABLE I. Tabulated values for 〈r〉, �r , skewness, and excess
kurtosis for random hypersphere packings of N = 262 144 particles
in dimensions d = 2–9. Note that all packings are constructed with
monodisperse spheres except for d = 2, for which a 50-50 mixture
of bidisperse particles with size ratio 1.4:1 is used.

d 〈r〉 �r Skewness Excess kurtosis

2 1.9174 1.1564 0.1687 −0.3890
3 1.4435 1.1079 0.6113 0.1368
4 1.2289 1.0599 0.7749 0.4499
5 1.1338 1.0335 0.8535 0.6242
6 1.0890 1.0209 0.8954 0.7244
7 1.0642 1.0145 0.9214 0.7891
8 1.0459 1.0090 0.9397 0.8355
9 1.0294 1.0052 0.9596 0.8877

graphs with increasing numbers of loops, which account for
the fluctuation effects absent from mean field theory. It is
interesting to note that arguments similar to those given here
were previously given by Brout [17], who exploited the link
between trees and mean field theory for the Ising model, using
large z, where the factor (JkBT )n in an nth-order graph is
analogous to the pn

c here. In the Ising model J is the exchange
interaction between spins and T is the temperature.

IV. CONCLUSION

We have shown that all bond-dilution results have uni-
versal features so that results for various lattices in various
dimensions can be displayed on a single plot and these results
approach the Erdős-Rényi limit in high dimensions.
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