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Ballistic and diffusive dynamics in a two-dimensional ideal gas of macroscopic
chaotic Faraday waves
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We have constructed a macroscopic driven system of chaotic Faraday waves whose statistical mechanics, we
find, are surprisingly simple, mimicking those of a thermal gas. We use real-time tracking of a single floating
probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature and
diffusion constant and then self-consistently determine a coefficient of viscous friction for a test particle in
this pseudothermal gas. Because of its simplicity, this system can serve as a model for direct experimental
investigation of nonequilibrium statistical mechanics, much as the ideal gas epitomizes equilibrium statistical
mechanics.
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Classical kinetic theory requires molecular chaos and
homogeneity [1,2]. Atomic-scale collisions provide the source
of homogeneous random motion in thermal systems and form
the foundation of classical thermodynamics. In equilibrium
thermal systems the crossover from ballistic motion to dif-
fusive motion is a fundamental link between microscopic
statistical mechanics and macroscopic thermodynamics [3].
In Einstein’s classic thought experiment of a pollen grain in
water a thorough study of the grain’s ballistic motion would
require simultaneous temporal resolution of �10 μs and
spatial resolution of �1 nm [4]. Therefore, this crossover from
ballistic to diffusive has only recently been experimentally
demonstrated in the equilibrium thermal systems of rarefied
gases [5,6] and liquids [7,8].

By contrast, macroscopic systems allow studies of their
constituent dynamics that are impossible in the thermal world.
Macroscopic systems dilate the characteristic length and time
scales but lose the stochastic excitations of thermal systems.
This means that any of the random motion necessary for mim-
icking equilibrium thermal behavior macroscopically must be
produced by some stochastic energy input. Because chaotic
Faraday waves are very well understood and characterized
they present an ideal source of randomness. The Faraday
instability is excited on the surface of a fluid subject to
vertical oscillations beyond some critical amplitude [9–11].
Above a second, higher, critical amplitude the surface waves
transition from stable ordered waves to spatiotemporal chaos
[12]. Surface flows have been measured using fluorescent
dyes [13,14] and tracer particles considerably smaller than
the characteristic wave size [13,15–17]. A ballistic to diffusive
crossover has been observed in chaotic Faraday waves using
virtual tracer data drawn from particle image velocimetry
measurements [18]. However, for real tracer measurements to
date, diffusive motion and fractional Brownian motion have
been observed at long and at relatively short time scales,
respectively [17,19]; the ballistic regime for real particles has
not been demonstrated.

It remains unproven, therefore, whether a driven (and
therefore nonequilibrium) athermal system such as chaotic
Faraday waves still exhibits all characteristics of equilibrium
statistical mechanics, such as a ballistic-diffusive crossover
and a well-defined temperature derived from atomistic chaos,
as it is in classical kinetic theory. A variety of attempts to define

pseudotemperatures have been proposed for nonequilibrium
systems [20]. These have had limited success, describing
aspects of the systems’ dynamics only over narrow parameter
ranges and for few measured properties. A typical approach
is to use the Stokes-Einstein relation [21,22] or fluctuation-
dissipation theorem [22] to define an effective temperature.
While successful in producing a well-defined temperature,
these studies do not comment on whether or not their
internally determined quantities exhibit behavior consistent
with classical kinetic theory. In the present study we achieve
random excitation and homogeneity by floating a particle
large relative to the characteristic length of the Faraday waves
on a chaotic fluid surface (Fig. 1). Despite the decidedly
nonequilibrium nature of chaotic Faraday waves, we show
that they drive a buoyant tracer to undergo fully ballistic (short
times) and diffusive (long times) Brownian motion, a hallmark
of isotropic equilibrium statistical mechanics. This system
admits of a well-defined temperature, diffusion constant, and
drag coefficient consistent with the system being a nearly
ideal gas of excitations. We have created a macroscopic
pseudothermal system (which, if treated like a conventional
thermal system, would be 108 times hotter than the center of
the sun).

We generate the Faraday waves in a circular aluminum dish
brimful with water (Fig. 1). We use a circular dish to discourage
ordering of the waves [23]. The inner portion, where the water
is held, has a radius of 9 cm and a depth of 1.27 cm. A gutter
to collect spillover is carved around this inner region. The
dish is vertically agitated by a shaker (Vibration Test Systems
VTS-100) whose frequency f and peak-peak amplitude A

we control independently using a digital function generator
(Stanford Research Systems Model DS335) and a voltage
amplifier (Behringer Europower EP4000). Mounted on the
bottom of the dish is an accelerometer (CTC AC244-2D/010)
used to measure stroke amplitude and frequency. The dish is
filled to brimful conditions [11] against a knife edge to avoid
pinning of the contact angle, which would create a “cold” zone
near the edges. However, the fluid position remains pinned to
the knife edge, leading to some damping of the waves near the
edges. Our floating test particle is a three-dimensional printed
section of cone (selectively laser sintered nylon, coated in
black spray paint, with a density of approximately 0.7 g/cm3)
with a top radius of 0.75 cm, height 0.25 cm, side angle
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Electromechanical Shaker

Accel

FIG. 1. (Color online) Shown on the left is a cross-sectional
diagram (cartoon) of the shaker assembly. The inner portion of the
dish is filled with water to brimful conditions. The electromechanical
shaker vertically agitates the dish, exciting the Faraday instability on
the surface of the water. A buoyant particle is buffeted by the surface
waves. An accelerometer (Accel) is attached to the bottom of the
dish to directly measure the peak-peak amplitude A. Shown on the
right is a photo of the experimental apparatus from above. A floating
particle is shown, along with a typical position trace for 7.5 s of data
collection. The surface of the water is illuminated from an angle to
show the chaotic Faraday waves.

45◦, and mass 216 mg. The size of the particle is chosen
such that it is always larger than the characteristic size of the
Faraday waves, which are on the order of millimeters. The
particle is colored black and the dish is spray painted white for
maximum contrast. The system is imaged from �1.3 m above
the surface of the water with a digital camera (Pointgrey Flea3
FL3-U3-32S2M-CS with a Pentax C32500 KP lens) with a
2080 × 1552 CMOS sensor.

We know a priori that certain regions of our parameter
space are inaccessible (Fig. 2): Below a critical amplitude line
chaotic Faraday waves do not exist; above a sufficiently high
amplitude line the surface undergoes a topological transition
and begins to splash, which typically sinks the particle. The
shape of these critical lines is nontrivially dependent on the
properties of the fluid (i.e., viscosity, capillary length, and
skin depth), the frequency and amplitude of oscillation, and
the container aspect ratio [24]. The details of the transition
from ordered to chaotic Faraday waves have been the subject
of a great deal of scientific interest [25,26]. However, for
this work we are only concerning ourselves with systems in
which spatiotemporal chaos is fully developed but the vertical
oscillation is not so great that the fluid splashes.
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FIG. 2. (Color online) Map of the parameter space. The param-
eter space is formed by the two externally controlled parameters:
shaker frequency f and peak-peak amplitude A. This map shows
approximate loci between the nonchaotic, accessible, and splashing
regimes. Plotted within the accessible region are points in parameter
space where measurements were taken, with color indicating pseu-
dotemperature τ . The color gradient goes from blue (dark gray) for
cold to red (light gray) for hot. Plotted behind these points is an
interpolated contour map of τ .

The floating test particle is set into the dish near the
center and tracking is initiated. We track the particle with
subpixel accuracy using a radial symmetry algorithm [27]. By
restricting our region of interest of the current frame to the
area near where the particle was found in the previous frame,
we are able to track in real time at 60 frames/s with a signal
to noise ratio �200:1 and a subpixel real-space resolution of
<10 μm. The particle is tracked for 7.5 s, chosen to allow for
maximum data collection while reducing the likelihood that
the particle will reach the edge of the dish, where the physics
is fundamentally different. The process is repeated for N = 10
or 100 trials.

We measure the mean square displacement 〈�r2〉 and use
it to characterize the particle’s motion. If motion is ballistic
then

〈�r2〉 = 〈v2〉�t2, (1)

where 〈v2〉 is the mean square ballistic velocity and �t is the
lag time. If motion is diffusive, then

〈�r2〉 = 4D�t, (2)

where D is the diffusion constant. Figure 3 shows a representa-
tive mean square displacement demonstrating ballistic motion
(〈�r2〉 ∼ �t2) for short times and diffusive (〈�r2〉 ∼ �t) for
long times. We measure the coefficients 〈v2〉 and D by fitting
Eqs. (1) and (2) to the data in the ballistic and diffusive regimes,
respectively.

The insets of Fig. 3(a) show the scaled distributions of
displacement magnitude for various lag times �t . For short
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FIG. 3. (Color online) Representative mean square displacement
〈�r2〉 (f = 85 Hz and A = 0.159 mm). Here 〈�r2〉 is plotted against
lag time �t . At short lag times the mean square displacement shows
a power law with an exponent of 2, indicating ballistic motion.
For longer lag times the curve turns over to a power law with
an exponent of 1, indicating diffusive motion. The upper left inset
is the distribution of displacement �r divided by a factor of lag
time �t for lag times in the ballistic regime. The lower right inset
is the distribution of �r divided by �t1/2 for lag times in the
diffusive regime. Both distributions are shown to collapse onto a 2D
Gaussian distribution integrated over all directions (radial Gaussian
distribution).

times in the ballistic regime the distributions collapse when
scaled by a factor of �t and for long times in the diffusive
regime the distributions collapse when scaled by a factor of
�t1/2. In both regimes, the distributions are well described
by a two-dimensional (2D) Gaussian distribution integrated
over all directions uniformly. This random walk behavior is an
emergent result of allowing a particle to interact with a chaotic
surface.

In thermal systems the quantities 〈v2〉 and D are related
to temperature T and the coefficient of viscous friction ζ . In
contrast to studies such as [21,22], we use the average kinetic
energy of the tracer as it undergoes ballistic motion to define
an effective temperature. By equipartition the temperature is
proportional to the average kinetic energy per particle as

1
2m〈v2〉 = kBT ≡ τ, (3)

where m is the mass of a particle (m = 216 mg) and kB the
Boltzmann coefficient. The thermal energy scale kBT , D, and
ζ are related by the Stokes-Einstein relation as

Dζ = kBT ≡ τ, (4)

where D and ζ both depend on τ . For our system we regard τ ,
the energy scale, as a pseudotemperature; τ may be treated with
the same physics as a conventional temperature, as opposed to
an effective temperature such as those used to describe granular
and other athermal systems. The friction term ζ is primarily
associated with the viscosity of the chaotic Faraday waves as
a 2D medium through which the floating particle is moving.
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FIG. 4. (Color online) Gas behavior. (a) Pseudotemperature τ

plotted against shaker peak-peak amplitude A for various shaker
frequencies f , with linear fits shown for frequencies plotted in large
color symbols (circles, upward triangles, downward triangles, and
diamonds). Gray crosses are the remaining frequencies shown in
Fig. 2, ranging from 35 to 105 Hz, and the dashed line is a linear fit
to all data points shown. (b) Diffusion constant D plotted against
pseudotemperature τ . Data points are taken for data sets where
N = 100 trials. Shown in red is a fit to the data of Eq. (7). Error
bars shown in (a) and (b) are 1σ confidence intervals resulting from
fits used to determine D and τ .

Thus, by measuring 〈v2〉 and D we can determine the intrinsic
properties τ and ζ of a 2D pseudothermal system.

Analysis of the data reveals the dependence of 〈v2〉 and D,
and therefore τ and ζ , on our externally controlled parameters
A and f . Figure 4(a) demonstrates that pseudotemperature τ is
proportional to shaker amplitude A, independent of frequency.
This trend is also apparent in the pseudotemperature contours
shown in Fig. 2. Thus, driving amplitude is the external control
for pseudotemperature. Since the typical Faraday wavelength
is primarily determined by the driving frequency and τ is
independent of frequency, we may also deduce that τ is
independent of the ratio of particle size to wavelength over
the range of parameters for which we have conducted our
study. We find a calibration curve between driving amplitude
and the pseudotemperature of our bath:

τ ≈ (1.3 × 10−7 J/mm)A − 1.0 × 10−8 J. (5)

The linearity of this relationship is expected because the height
of the chaotic Faraday waves should be proportional to the
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driving amplitude and the particle moves in response to the
height difference between the two largest waves in contact
with it. However, there is a curious feature to this fit in that
τ crosses zero at finite A. This is due to the fact that below
a particular driving amplitude the pseudotemperature is ill
defined because the Faraday waves are not chaotic. Thus, A

must reach a critical value before τ can exist and begin to
increase.

While the existence of ballistic and diffusive motion is
strongly suggestive that the system of driven Faraday waves
can be considered as a gas at some pseudotemperature τ , we
can more rigorously examine whether other general properties
of thermal gasses, such as the temperature dependence of
their viscosity, manifest themselves in this driven system.
Recalling now the Stokes-Einstein relation (4), we examine
the behavior of the viscous drag coefficient ζ . Stokes’ equation
for incompressible fluids states that ζ ∝ η where η is the
viscosity. Sutherland’s formula for the viscosity of a nearly
ideal 2D gas (in which particles have finite collision radii and
soft long-range interaction potentials) [28] further relates η to
τ as

η = λ′ τ√
τ + C ′ , (6)

where λ′ and C ′ are constants of the gas. We can now solve
for D as a function of τ for an ideal gas to find

D = a
√

τ + b, (7)

where all of our constants have been absorbed into a and b.
Figure 4(b) shows our data on τ and D to be well fit by this sim-
ple ideal gas model with constants a = 0.16 ± 0.01 m/kg1/2

and b = (−1.87 ± 0.65) × 10−9 J. The parameter a relates
diffusion to energy and the parameter b contains information
on the interactions within the gas.

As a relates diffusion to energy it has units of length/

mass1/2. Plugging in the length and mass scale of the particle
we would predict from simple dimensional analysis that a

should be on the order of 0.75 cm/(0.2 g)1/2 � 0.5 m/kg1/2,
which is comparable to the fitted value of a.

Since b is negative there is a positive value of τ at which
the diffusion constant should go to zero and thus the viscosity
to infinity. This is a singular point that does not exist for
real ideal gases but is difficult to probe directly because
the time scales for diffusion diverge as τ → −b and, more

practically, it is near the transition from chaos to order in our
system.

Above τ = −b the viscosity and diffusion constant main-
tain functional behavior consistent with that of a nearly ideal
gas, suggesting that the chaotic Faraday waves should be
considered a nearly ideal gas of random surface excitations.
The sign of the constant b tells us the sign of the interaction
between the elements of the gas: positive for attractive and
negative for repulsive. One would expect that the interactions
in our system are repulsive, as gravity will cause waves to repel
one another over short distances.

We have demonstrated that chaotic Faraday waves can be
described as a pseudothermal, nearly ideal gas of random
surface excitations for which a thermal energy scale, diffusion
constant, and viscosity are well defined. We directly observe
the particle to receive normally distributed isotropic kicks
from the chaotic waves. The particle’s displacement scales
with lag time exactly as would be expected for a Brownian
particle and exhibits a clear transition from ballistic to diffusive
behavior, showing that we have produced a laboratory-scale
Brownian system by Aristotelian means. This pseudothermal
gas takes difficult-to-access time and length scales and dilates
them to easily studied levels. In so doing we have defined
a macroscopic effective temperature in an out-of-equilibrium
system functionally identical to, but completely divorced in
origin from, a microscopic thermal temperature. The present
single-particle study outlines the method by which one would
define a temperature for a system of chaotic Faraday waves
and future studies should examine the dynamics of the
multiparticle case.

This experimentally tractable system will be useful for
studying the statistical mechanics of actively driven nonequi-
librium systems in general, especially interparticle interactions
and driven assembly on 2D substrates, which is a subject
of active scientific interest [29]. An outstanding theoretical
question for 2D systems is whether it is possible to create long
range order from short-range interactions [30–32]. Our system
offers a fully 2D environment in which these questions can be
studied.

We thank John Royer and John Toner for helpful discus-
sions. We thank the NSF for support under Career Award
No. DMR-1255370 (E.I.C. and K.J.W.) and Grant No. DMR-
1006171 (R.P.).

[1] J. C. Maxwell, Philos. Trans. R. Soc. London 157, 49
(1867).

[2] L. Boltzmann, in Wissenschaftliche Abhandlungen, edited by
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