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I. ISOSTATICITY, FORCE NETWORK, AND SOFT MODES

This section consolidates and completes the results of Refs. [1–3] that are needed for the presentation of the main
text. Note that in order to highlight the logical flow of the discussion, we denote the main results and summaries by
(R1), (R2), etc.

Consider a packing with k = 1 · · ·N particles in α = 1 · · · d dimensions. Two particles are in contact if |ri−rj | = σij ,
where σij = (σi + σj)/2 is the sum of the particle radii. We define ∂k the set of particles that are in contact with
particle k. A contact is an ordered pair 〈ij〉 with i < j that we consider as a single index 〈ij〉 = 1 · · ·Nc, where Nc

is the total number of contacts. On each contact there is a scalar contact force fij = fji, and we define ~f = {fij}, a
vector that lives in a Nc-dimensional vector space. The particles positions are rkα and the external forces are Fkα. We
use bold letters, e.g., rk and Fk, to denote d-dimensional vectors. By contrast, we define ~F = {Fkα} and ~r = {rkα}
as vectors that live in the Nd-dimensional vector space. We also define the contact vector nij = (rj − ri)/|rj − ri|.
Note that nij = −nji.

A. Force balance equations

The force balance equations

Fkα =
∑

j∈∂k

nα
jkfjk (1)

can be written in matrix notation as

Fkα =
∑

〈ij〉
(ST )〈ij〉kα fij =

∑

〈ij〉
Skα
〈ij〉fij ⇒ ~F = ST ~f , (2)

where S is a Nc ×Nd matrix with elements

Skα
〈ij〉 = (δjk − δik)nα

ij . (3)

We also define a Nc ×Nc symmetric matrix N = S ST with elements

N 〈lm〉
〈ij〉 =

∑

kα

Skα
〈ij〉Skα

〈lm〉 = (δil − δmi − δlj + δmj)nij · nlm , (4)

and keep in mind that the zero modes of ST are also zero modes of N , but that N can have additional zero modes.
In the following, we consider two possible situations.

1. Imposing Fkα = 0, which corresponds to a mechanical equilibrium in absence of external forces, such as under
periodic boundary conditions. Then Eqs. (1) are Nd homogeneous linear equations for the Nc contact forces.
Note, however, that

∑N
k=1 Fkα =

∑
k,j∈∂k nα

jkfjk = 0 because fij is symmetric while nij is antisymmetric. This
condition expresses the global translational invariance of the system. As a consequence, we get that d equations
are linearly dependent of the others, and thus only (N − 1)d equations are independent.

In absence of external forces, Eqs. (1) admit max[Nc − (N − 1)d, 0]
non-zero linearly independent solutions.

(R1)

2. Imposing mechanical equilibrium under non-zero external forces that satisfy
∑

k Fkα = 0. This situation corre-
sponds, for instance, to the presence of external confining walls that fix the center of mass of the packing. In
this case, Eqs. (1) are inhomogeneous.

In presence of external forces, Eqs. (1) admit a unique solution for Nc = (N − 1)d,
while for Nc > (N − 1)d the solutions form a linear space of dimension Nc − (N − 1)d.

(R2)
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B. Particle displacements

For a given packing, we now consider a displacement δriα of particle i in direction α and the distance between a
pair of particles ρij = |ri − rj |. To linear order,

δρij =
∑
α

nα
ij(δrjα − δriα) , ⇒ δ~ρ = Sδ~r , (5)

where δ~ρ = {δρij} lives in the Nc-dimensional vector space, while δ~r = {δrkα} lives in the Nd-dimensional vector
space. Displacements δ~r that leave the distances in the packing invariant should satisfy 0 = Sδ~r. Equations (5) thus
always admit d trivial solutions δrkα = δα,α′ that correspond to uniform translations of the packing in the d available
directions.

Now, consider soft harmonic spheres that are almost at jamming. The potential energy is

U = κ
∑

〈ij〉
(|ri − rj | − σij)2θ(σij − |ri − rj |), (6)

where θ(r) is the Heaviside function, and the stiffness κ is set to unity without loss of generality. Thus, |ri − rj | =
σij − εij for contacts, and |ri − rj | > σij for non-contacts. Assuming that contacts cannot be opened, in the limit
ε → 0 the Nd×Nd elements of the Hessian matrix are

Hjα′
iα =

∂2U

∂riα∂rjα′
= δij

∑

k∈∂i

nα
kin

α′
ki − nα

ijn
α′
ij δ(〈ij〉) , (7)

where δ(〈ij〉) = 1 if ij are in contact and zero otherwise. It follows that H = STS, which can be shown using Eq. (3):

(STS)jα′
iα =

∑

〈kl〉
Siα
〈kl〉Sjα′

〈kl〉 =
∑

〈kl〉
(δli − δki)nα

kl(δlj − δkj)nα′
kl =

∑

〈kl〉
nα

kln
α′
kl (δliδlj − δkiδlj − δliδkj + δkiδkj)

= δij

∑

k∈∂i

nα
kin

α′
ki − nα′

ij nα′
ij δ(〈ij〉) = Hjα′

iα .
(8)

The energy of small displacements, i.e., displacements small enough that they do not open any contact, is

U ∼ δ~rTHδ~r = δ~rTSTSδ~r = (Sδ~r)2 .
(R3)

C. Eigenvalue Algebra

From the definition of the Nc × Nd matrix S in Eq. (3), of the Nc × Nc symmetric matrix N = S ST in Eq. (4),
and the Nd×Nd symmetric matrix H = STS in Eq. (8), it follows that, for all p, the eigenvalues λ obey

Nd∑

i=1

λp
H,i = TrHp = TrN p =

Nc∑

i=1

λp
N ,i , ∀p . (9)

This result implies that the non-zero eigenvalues of N and H are identical.
Recall that H always has d zero eigenvalues due to translational invariance. Then, if Nc ≥ (N − 1)d, the matrix

N must have zN = Nc −Nd + d = Nc − (N − 1)d zero eigenvalues. Similarly, if Nc ≤ (N − 1)d, the matrix H must
have zH = Nd−Nc zero eigenvalues.

The number of zero modes of the matrices N and H is

zN =

{
Nc − (N − 1)d if Nc ≥ (N − 1)d
0 if Nc ≤ (N − 1)d

,

zH = d +

{
0 if Nc ≥ (N − 1)d
(N − 1)d−Nc if Nc ≤ (N − 1)d

.

(R4)
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D. Floppy modes

Now, consider a packing with Nc contacts. We select one of these contacts, 〈ij〉, which for notational simplicity
we label τ = 〈ij〉 (for two particles touching). We want to displace the particles by δ~r(τ), such that all distances
ρkl in contacts 〈kl〉 6= τ remain unchanged, while the contact τ is opened by an infinitesimal amount. The resulting
excitation is the floppy mode associated with opening contact τ . It is floppy, because the contact is opened, hence
it does not contribute anymore to the system energy, and all the other contacts 〈kl〉 remain at a distance σkl, hence
they also do not contribute to the energy. The total system energy thus remains zero. To lowest order, the variation
of the distance ρkl is given by Eq. (5), and we want to impose δρij = 1 (or any other infinitesimal amount, because
the equations are in any case linear), while δρkl = 0 for all other contacts. We thus want to solve

δρ
(τ)
kl = nkl · (δr(τ)

k − δr(τ)
l ) = δτ,〈kl〉 ⇒ δ~ρ(τ) = Sδ~r(τ) = ~τ , (10)

where the Nc-dimensional vector ~τ belongs to the space of contacts with components τ〈kl〉 = δτ,〈kl〉, i.e. it is equal to
1 for contact τ and zero for all other contacts. Because we want to exclude global translations of the packing from the
solutions of Eq. (10), we impose

∑N
k=1 δr(τ)

k = 0. In this way, (i) the vector δ~r(τ) is orthogonal to the d zero modes of
S, and (ii) it is parametrized by (N − 1)d independent variables. Equation (10) is thus a set of Nc non-homogeneous
linear equations for (N − 1)d independent variables.

Equations (10) admit a unique solution for Nc = (N − 1)d,
while for Nc < (N − 1)d the solutions form a linear space of dimension (N − 1)d−Nc.

(R5)

E. Response to a dipolar force field

By applying ST to Eq. (10) we obtain

STSδ~r(τ) = Hδ~r(τ) = ST~τ . (11)

From Sec. I A, we know that matrix ST has Nc − (N − 1)d zero modes, and therefore three scenarios are possible.

1. If Nc < (N − 1)d, then Eq. (10) has many solutions, and ST has no zero modes.

If Nc < (N − 1)d, Eq. (10) and Eq. (11) have the same solutions. (R6)

2. If Nc > (N − 1)d, then Eq. (10) has no solutions. Hence, ST has some zero modes, and Eq. (11) can admit
solutions if

Sδ~r(τ) − ~τ = ~f (τ) , (12)

where ~f (τ) is one of the zero modes of ST . In general we do not know how many solutions of Eq. (12) exist.
However, the vector (ST~τ)kα = Skα

τ = (δjk − δik)nα
ij is clearly orthogonal to the d trivial zero modes of S and

H, because
∑

k(ST~τ)kα =
∑

k(δjk − δik)nα
ij = 0. If Nc ≥ (N − 1)d, these are the only zero modes of H, and

therefore we can invert H by restricting ourselves to the space orthogonal to the d trivial zero modes. We then
have

δ~r(τ) = H−1ST~τ . (13)

If Nc > (N − 1)d, Eq. (10) has no solutions and Eq. (11) has a unique solution given by Eq. (13). (R7)

3. If Nc = (N − 1)d, then Eq. (10) has a unique solution and ST has no zero modes. Hence, Eq. (11) also has a
unique solution. In addition, H only has the trivial zero modes so the reasoning from the previous point applies.

If Nc = (N − 1)d, Eq. (13) is the unique solution of both Eq. (10) and Eq. (11). (R8)
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Note that Eq. (13) can be interpreted as the response to a dipolar force field. Suppose that we take a packing in
equilibrium with zero external forces and we apply an external force εST~τ to it. Recall that (ST~τ)kα = (δjk − δik)nα

ij

hence we are applying a force Fi = εnij on particle i and Fj = −εnij on particle j, i.e., a dipolar force. For small ε,
minimizing the energy gives

∂U

∂riα
(~r + εδ~r) = ε(ST~τ)iα ⇒

∑

jα′
Hjα′

iα δrjα′ = (ST~τ)iα , (14)

which coincides with Eq. (11) and is solved by Eq. (13) for Nc ≥ (N − 1)d.

F. Isostaticity in absence of external forces

We consider the special case Nc = (N − 1)d+1 in absence of external forces, which corresponds to a packing under
periodic boundary conditions. In this case, we have that:

• zN = 1, hence N has a unique zero mode (Sec. I C);

• the force balance equation ST ~f = 0 has a unique solution (Sec. I A);

• because N = SST , the solution of ST ~f must be the unique zero mode of N .

Hence, the contact forces ~f are given by the unique zero mode of N and are fixed up to an overall scale factor (the
global pressure), which is left free because there are no external forces. We also have zH = d (Sec. I C), hence the
only zero modes of the small displacement matrix are those corresponding to global translations of the packing, and
there are no floppy modes (Sec. I D).

Under periodic boundary conditions, isostaticity corresponds to Nc = (N − 1)d + 1, and:

the forces are determined by the packing geometry through N ~f = 0, up to an overall scale factor;
the packing is mechanically stable in the sense that H has no non-trivial zero (or floppy) modes;
the response to a dipolar force is given by Eq. (13).

(R9)

G. Isostaticity in presence of external forces

We consider the special case Nc = (N − 1)d in presence of external forces, which corresponds to a packing confined
by walls. In this case, we have that:

• the force balance equation has a unique solution (Sec. I A);

• contact forces are fully determined by the external forces;

• H has no zero modes apart from the trivial ones.

Hence, small fluctuations that do not break contacts are stable. However, each contact τ corresponds to a unique
floppy mode, given by Eq. (13), that breaks contact τ keeping all the other contact distances fixed. This non-linear
soft mode has non-zero energy only because of the external forces. These soft modes are the ones used in the stability
analysis of Ref. [1].

In presence of external walls, isostaticity corresponds to Nc = (N − 1)d, and:
the forces are uniquely determined by the external forces;
the packing is mechanically stable in the sense that H has no zero modes;
floppy modes allow a contact to open without affecting the other contacts;
they are given by Eq. (13), and their energy depends only on the external confining forces.

(R10)
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H. Other harmonic systems (including hard spheres)

We now consider the generalization of the discussion of Sec. I B to packings of other types of harmonic spheres near
jamming. First, we consider a potential energy U =

∑
〈ij〉 κij(|ri − rj | − σij)2θ(σij − |ri − rj |) with heterogeneous

stiffnesses κij . Assuming that contacts cannot be opened, the elements of the Hessian matrix are then

Hjα′
iα =

∂2U

∂riα∂rjα′
= δij

∑

k∈∂i

κkin
α
kin

α′
ki − κijn

α
ijn

α′
ij δ(〈ij〉) , (15)

Second, we consider a system with a potential energy U = κ
∑
〈ij〉

∣∣|ri − rj | − σij

∣∣νθ(σij − |ri − rj |). The force on
contact 〈ij〉 is then

fij ∝
∣∣|ri − rj | − σij

∣∣ν−1
, (16)

and the effective stiffness is

κij ∝
∣∣|ri − rj | − σij

∣∣ν−2 ∝ f
(ν−2)/(ν−1)
ij . (17)

At a isostatic point under periodic boundary conditions, contact forces are uniquely determined by the force balance
equations, and are thus independent of the particular choice of potential. Once the forces are determined, the effective
stiffnesses can be obtained via Eq. (17). Plugging this result in Eq. (15), we obtain a matrix H that gives the small
fluctuations associated with this modified potential, provided the harmonic approximation holds.

A special case of interest is that of hard spheres, which corresponds to ν → 0 in the absence of thermal excitations,
and thus κij ∝ f2

ij . The corresponding Hessian matrix has elements

Hjα′
iα =

∂2U

∂riα∂rjα′
= δij

∑

k∈∂i

f2
kin

α
kin

α′
ki − f2

ijn
α
ijn

α′
ij δ(〈ij〉) . (18)

In this case, we can define a modified matrix S̃ with elements

S̃kα
〈ij〉 = fij(δjk − δik)nα

ij . (19)

Using Eq. (19), one can then show that H = S̃T S̃ by noting that

(S̃T S̃)jα′
iα =

∑

〈kl〉
S̃iα
〈kl〉S̃jα′

〈kl〉 =
∑

〈kl〉
f2

kl(δli − δki)nα
kl(δlj − δkj)nα′

kl

= δij

∑

k∈∂i

f2
kin

α
kin

α′
ki − f2

ijn
α
ijn

α′
ij δ(〈ij〉) = Hjα′

iα .
(20)

Note also that because the contact forces are determined by the force balance condition in Eq. (2), the modified
matrix S̃ must have a zero eigenvector with constant components.

II. NUMERICAL SIMULATIONS

This section completes the numerical details used in order to obtain isostatic configurations and to extract their
force network.

A. Isostaticity Considerations

The exact solution for d = ∞ finds that limN→∞(2Nc/N) = 2d for jammed packings, independently of the
jamming density, but does not explicitly provide the finite N corrections. From that viewpoint, any solution that
gives Nc = dN + O(1) may thus be acceptable. One might nevertheless wonder what Nc should be, for a finite N
systems, in order to most efficiently converge to the thermodynamic limit. Is it sufficient to have Nc = dN + O(1),
or does one need exactly Nc = (N − 1)d + 1 ≡ N iso

c (under cubic periodic boundary conditions; other choices of
boundary conditions have different O(1) corrections [4])? Early numerical simulations [5, 6], including our own [7],
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FIG. S1: Energy per particle U/N ∝ (ϕ − ϕJ)
2 for the successive minimization of a representative system with Ni = 16384

in d = 3. Black stars show the energy of minimized packings and the red line is a fit to a harmonic function. Note that the
simulated packings are logarithmically spaced over 10 orders of magnitude in ϕ− ϕJ with roughly 10 systems per decade.

did not pay much attention to this issue. The protocols used did not exactly result in Nc = N iso
c , typically because of

compression rates that were too rapid, incorrect stopping criteria, insufficient numerical precision, etc. Although the
packings had Nc − N iso

c 6= 0, most of the jamming phenomenology was nevertheless found to be robustly conserved
from one set of simulations to another. Recently, the results of several more careful simulation protocols [1, 4, 8] have,
however, highlighted the importance of having exactly Nc = N iso

c to observe some key aspects of jamming criticality
in finite systems. In particular, the theoretical analysis of Ref. [9] relies heavily on packings being strictly isostatic
with Nc = N iso

c . For this reason, in this study we exclusively consider packings with Nc = N iso
c , which allows us to

directly apply the analysis outlined in Sec. I. It may nonetheless be interesting to check to what extent measurements
of the critical exponents in finite N are affected by Nc ≈ N iso

c , but this analysis is left for future work.

B. Detailed Numerical Minimization Protocol

The key difficulty in obtaining packings with N iso
c is distinguishing between contacts and near contacts. In finite-

precision arithmetics, this challenge follows from the gap distribution for near contacts being singular and the contact
force distribution having a fat power-law tail at weak forces. Hence, being insufficiently close to jamming results in
ambiguities in the force network determination. Compounding this difficulty is the need to precisely remove rattlers,
as they are not part of the force network itself. In order to produce a packing that is truly isostatic, one thus need
to impose that the distance between the contact spheres should be very near the particle diameter, with a precision
that increases with Ni. For instance, in a system with Ni = 16384 in d = 4, with high probability at least one near
contact is only O(10−9)σij away from contact. All contact pairs must therefore be known to within a higher precision
than that value.

The protocol we implemented is designed to reliably converge to an isostatic configuration. It does so by producing
a series of packings with logarithmically spaced energies and excess packing fractions. We empirically found that
choosing nsteps = 10 packings per decade of packing fraction provides a reasonably high degree of success. As shown
in Figure S1, for a quadratic contact potential as in Eq. (6), the system energy scales with the distance to jamming
as

U ∝ (ϕ− ϕJ)2θ(ϕ− ϕJ). (21)

We begin by creating a configuration at an initial packing fraction ϕ0 ≈ 2ϕJ, and an initial estimate for the jamming
density, ϕ̃0. We minimize the energy of this packing using the FIRE algorithm [10] to U0, and calculate the packing
fraction for the next iteration, ϕ1, using the general rule

ϕi+1 = ϕ̃i + (ϕi − ϕ̃i) 10−1/nsteps . (22)
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Every particle is then isotropically dilated to this new packing fraction and the system energy is minimized to Ui,
which we then use to compute a new, better estimate for the jamming density

ϕ̃i+1 =
ϕi+1 − ϕi

√
Ui/Ui−1

1−
√

Ui/Ui−1

. (23)

As this process evolves we see that ϕi and ϕ̃i converge to ϕJ, and that
√

Ui/Ui−1 converges to 10−1/nsteps . Here, we
continue this procedure until U/N ≤ 10−20 for d = 3 and 4, and U/N ≤ 10−24 for d = 2.

In order to perform the energy minimization efficiently, our numerical routines make extensive use of general
purpose graphical processing units (GPGPU) that are part of the University of Oregon ACISS supercomputer (156
NVIDIA M2070). Meeting the needed resolution between contacts and near contacts requires more precision than
is offered by IEEE 754 double-precision number formats. Our GPGPU hardware does not, however, implement
IEEE 754 quadruple-precision computations. We have thus resorted instead to implementing double-double precision
algorithms, whereby each number is represented by a pair of double precision numbers, and provides 106 bits of
precision in the significand (as opposed to 113 for quad precision) and 11 bits in the exponent (as opposed to 15
for quad precision). The basic mathematical operations are based on the NVIDIA implementation of double-double
precision arithmetic [11].

C. Detailed Analysis Protocol

The lowest energy configuration is used for subsequent analysis. Contacts and near contacts are distinguished, using
a gap threshold of 10−11σij , but the distinction is fairly robust to a choice of threshold within an order of magnitude
of this value. Particles with Z < d + 1 contacts are considered to be rattlers and are discarded from the rest of the
analysis. Note that the rattler determination is done self-consistently, in case two or more rattlers are initially in
contact with one another. After rattlers are removed, only configurations with Nc = N iso

c are kept for the subsequent
force analysis. In d = 3 and 4, more than two-thirds of the systems met that criterion, and in d = 2 about a quarter
did so (the origin of this difference is unclear). Even though Nc may be off by only one or two contacts, the algorithm
for extracting forces is acutely sensitive to this requirement and therefore non-isostatic configurations ought to be
left out of the subsequent analysis. Further modifying these packings using a different algorithm, such as sequential
linear programming [12] or following the unstable modes of slightly hypostatic packings [1], may increase the yield of
packings with N iso

c contacts, but this approach has not been attempted here.
Following the results of Sec. I B, we extract contact forces from the zero-eigenvalue eigenvector of matrix N . Because

N is sparse, the relevant part of its eigensystem can be efficiently determined with the Lanczos algorithm [13], as
implemented in Mathematica 10 [14]. It is expected of perfectly isostatic systems that all elements of that eigenvector
share the same sign, which corresponds to fij > 0. For the vast majority of configurations, it is indeed the case. As
a last check for isostaticity, the rare systems that do not meet this criterion are eliminated from the force analysis.

D. Coplanarity and Weak Forces

In the main text, we have argued that particles with Z = d + 1 contacts are responsible for the anomalous tail
of the force distribution. The collection of particles giving rise to the anomalous scaling is further argued to have d
neighbors that are nearly coplanar with itself, which results in a weak resulting force (by force balance) on the d+1th
particle and in localized soft modes. In order to disentangle the contribution of coplanarity from that of connectivity
in determining what particles have an anomalous behavior, we explicitly separate the two effects below.

First, we note that the average force on particles with Z = d + 1

f̄i =
1
Z

∑

j∈∂i

fij (24)

follows the mean-field scaling (Fig. S2), and therefore cannot on its own capture the anomalous scaling.
Second, we validate the correlation between coplanarity and weak forces. As a measure of coplanarity, we consider

the volume Qd of the parallelepiped spanned by the d contact vectors that are closest to being coplanar with the
center of a given particle i with Z = d + 1 contacts. In order to do so, we define a d× d matrix V for these j = 1 . . . d
contact vectors as

Vj
α = rα

j − rα
i , (25)
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FIG. S2: (a) Cumulative distribution of f̄ for particles with Z = d + 1 contacts in systems with Ni = 16384 in d = 4. The
power-law scaling at weak forces is consistent with θe. (b) Correlation between the relative strength of the weakest force and
the relative degree of coplanarity for particles with Z = d + 1 contacts in six of these same systems.

where the component index α = 1 . . . d, and note that Qd = |det(V)|. After correcting for the inherent heterogeneity
in f̄i, we observe a strong correlation between coplanarity and weak forces (Fig. S2).

Joining these results with those presented in the main text confirms that the physical origin of the anomalous θ`

scaling is the weakest force of the particles that are most likely to buckle. Further analysis of these bucklers is left for
future work.
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