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Recent theoretical advances offer an exact, first-principles theory of jamming criticality in infinite
dimension as well as universal scaling relations between critical exponents in all dimensions. For packings
of frictionless spheres near the jamming transition, these advances predict that nontrivial power-law
exponents characterize the critical distribution of (i) small interparticle gaps and (ii) weak contact forces,
both of which are crucial for mechanical stability. The scaling of the interparticle gaps is known to be
constant in all spatial dimensions d—including the physically relevant d ¼ 2 and 3, but the value of the
weak force exponent remains the object of debate and confusion. Here, we resolve this ambiguity by
numerical simulations. We construct isostatic jammed packings with extremely high accuracy, and
introduce a simple criterion to separate the contribution of particles that give rise to localized buckling
excitations, i.e., bucklers, from the others. This analysis reveals the remarkable dimensional robustness of
mean-field marginality and its associated criticality.
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Introduction.—The analogy between glasses and sand-
piles, which are both rigid and disordered, was first
proposed by Bernal [1], who pioneered comparing their
structure. The analogy received renewed attention follow-
ing the suggestion of Liu and Nagel that different disor-
dered solids could be described by the same jamming phase
diagram [2]. Motivated by the ubiquity of jamming in
materials physics, an intense research effort from the soft
and granular matter community, on the one hand, and from
the statistical mechanics of disordered systems community,
on the other, has since ensued [3–5].
Recent theoretical breakthroughs have succeeded in

transforming this analogy into a solid predictive frame-
work. Quite remarkably, results from what appeared, at
first, to be two independent lines of work now point
towards a unifying view of the glass problem, understood
as encompassing a broad range of amorphous materials.
First, the exact infinite-dimensional (mean-field) solution
of the celebrated hard-sphere model precisely unifies glass
formation and jamming [5–9]. This d ¼ ∞ solution pre-
dicts, from first principles, that jammed packings are
mechanically stable but only marginally so [8,9]. The
packings are, therefore, isostatic [[10] Sec. I]; i.e., the
number of interparticle contacts matches Maxwell’s cri-
terion for mechanical stability [3,4]. The solution further
predicts a (nontrivial) criticality near jamming [8,9].
Second, a real-space description of elementary excitations
near jamming finds that soft modes pervade in that regime
[11,12]. This approach further provides scaling relations

between the jamming critical exponents, based on marginal
stability [13–17].
Both approaches agree that two power-law exponents

characterize the structure of disordered jammed packings.
The distribution (i) of spatial gaps between particles that are
nearly (but not quite) in contact and, hence, of the average
number of neighbors away from a sphere surface, scales as
ZðhÞ − Zð0Þ ∼ h1−γ for small h, where h ¼ ðr − σÞ=σ is the
gap size for spheres of diameter σ [18], and (ii) of weak
forces f between spheres scales as PðfÞ ∼ fθf for small f.
The d ¼ ∞ solution further predicts γ ¼ 0.41269… and
θf ¼ 0.42311… [8,9].
For isostatic jammed packings, it is found that opening a

force contact between particles destabilizes the system by
creating a soft mode [[10] Sec. IG], which is a collective
particle excitation that preserves the remaining contacts
[13,14,16,19]. Phenomenologically, it was noted that some
of the resulting excitations are extended, while others are
localized [13]. This distinction suggests the existence of
two different force exponents: PðfÞ ∼ fθe for contacts
associated with extended modes, and PðfÞ ∼ fθl for con-
tacts associated with localized modes. The observed total
force distribution, which is a weighted average of the two,
should, therefore, have the asymptotic form PðfÞ ∼ fθf ,
with θf ¼ minðθe; θlÞ. Marginal mechanical stability
analysis provides universal scaling relations for the
exponents: θl ¼ 1 − 2γ and θe ¼ θl=γ [13–16].
We are now, however, left with a conundrum. Using

γ ¼ 0.412 69 from the d ¼ ∞ solution with the scaling
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relations derived from marginal stability gives θe ¼
0.423 11 and θl ¼ 0.174 62. The d ¼ ∞ solution, thus,
exactly obeys the scaling relations, but only if one assumes
θf ¼ θe. Yet, this assumption is inconsistent with the
relation θf ¼ minðθe; θlÞ ¼ θl, which must be true if
localized modes exist with finite probability.
The situation is further muddled by the currently

available numerical estimates for γ and θf in finite d.
The value γ ¼ 0.40ð2Þ is found to remain unchanged for all
d ≥ 2 [13,16,20–22], and is consistent with the d ¼ ∞
solution. The upper critical dimension for the jamming
transition may, thus, be as low as du ¼ 2 [21,22], with all
jamming critical exponents being constant for d ≥ 2.
Reported values for θf, however, range from 0 [23,24] to
0.42 [22]. Encouragingly, for d ¼ 2 the most reliable
determinations found θf ¼ 0.18ð2Þ [13,16], independently
of the interaction potential [[10] Sec. IH]. For d ¼ 3,
however, no such agreement is observed and the results
even depend on microscopic details of the system [16]. In
this Letter, we resolve this perplexing situation by identi-
fying a simple geometrical criterion associated with local-
ized modes, which allows us to accurately study the weak
tail of the force distribution.
Isostaticity and the force network.—Consider a packing

with i ¼ 1 � � �N particles located in positions ri ¼ friαg in
α ¼ 1 � � � d dimensions with hiji ¼ 1 � � �Nc contacts,
where i < j. At the jamming transition, particles do not
overlap, hence, jrj − rij ≥ σij, where σij ¼ ðσi þ σjÞ=2 is
the sum of particle radii. Two particles are in contact if
jrj − rij ¼ σij, and in this case, they exchange a radial force
along the contact vector nij ¼ ðrj − riÞ=jrj − rij. The
scalar contact force fij ¼ fji on each contact defines
~f ¼ ffijg, an Nc-dimensional vector, and the external

forces Fiα define an Nd-dimensional vector ~F ¼ fFiαg.
The force balance equations for particle i, given the set ∂i
of particles in contact with it, then reads

Fiα ¼
X

j∈∂i
nαjifji ⇒ ~F ¼ ST ~f; ð1Þ

where S is a Nc × Nd matrix with elements Skα
hiji ¼

ðδjk − δikÞnαij [[10] Sec. IA]. For a system under cubic
periodic boundary conditions and in mechanical equilib-

rium under no external force, i.e., ~F ¼ ~0, Eq. (1) gives Nd
homogeneous linear equations for the Nc contact forces,

i.e., ST ~f ¼ 0. The contact vector ~f is, therefore, a zero
mode of ST . For convenience, we define the Nc × Nc

symmetric matrix N ¼ SST , which has all the zero modes
of ST , but may also have additional ones [[10] Sec. IC].
After taking into account global translational invariance,

Eq. (1) results in a system of ðN − 1Þd homogeneous
linearly independent equations over Nc variables [[10]
Sec. IA] and, therefore, admits maxfNc − ðN − 1Þd; 0g

nonzero linearly independent solutions. It has been argued
further that jamming takes place in the isostatic limit
[13,14,21,25], which corresponds to the existence of a

single solution to ST ~f ¼ 0 [Eq. (1)], and hence, Nc ¼
ðN − 1Þdþ 1 under periodic boundary conditions [[10]
Secs. IF and IIA]. Note that, in the thermodynamic limit,
the average particle connectivity, Zð0Þ ¼ 2Nc=N, con-
verges to the usual Maxwell criterion for mechanical
stability, limN→∞Zð0Þ ¼ 2d, consistently with the d ¼ ∞
solution [[10] Sec. IIA]. For an isostatic system, N has a
unique zero mode [[10] Sec. IF], and becauseN ¼ SST we

also have N ~f ¼ 0. The solution vector ~f must, therefore,
be the unique zero mode of N , with an overall scale factor
corresponding to the global pressure. In summary, given the
orientation vectors for each pair of contacts in an isostatic
packing, the distribution of contact forces can be uniquely
determined by finding the eigenvector corresponding to the
zero eigenvalue of N .
Numerical construction of jammed packings and

calculation of the forces.—Several protocols have been
proposed to construct jammed packings of frictionless
spheres, see, e.g., [13,21–26]. Some of them, however,
do not systematically result in packings that are precisely
isostatic [[10] Sec. IIA]. Because the scaling laws between
the jamming exponents follow from isostaticity [14–16],
this requirement is strictly enforced here [[10] Sec. IIB].
Isostatic packings under periodic boundary conditions are
numerically obtained by minimizing the energy of athermal
soft spheres with a quadratic contact potential on general
purpose graphical processing units using quad-precision
calculations [22,27,28]. Our protocol begins with Ni
randomly distributed particles at a packing fraction φ that
is roughly twice the final jamming density φJ. An isostatic
point is approached by successively minimizing the system
potential energy U using a FIRE algorithm [29], and then
shrinking the particle radii. The isostatic configuration can
be efficiently approached by exploiting the scaling U ∝
ðφ − φJÞ2 [22,23,30] to iteratively estimate the value of φJ,
and then target a new density at an energy that is a fixed
fraction of the previous one [[10] Sec. IIB]. For d ¼ 3

and 4, we thereby obtained approximately 100 single-
component systems with Ni ¼ 16 384, and 100 equimolar
binary mixtures with Ni ¼ 4096 in d ¼ 2 with a diameter
ratio of 1∶1.4. A more limited set of configurations was
also obtained for Ni ¼ 4096 in d ¼ 5–8. In all cases, the
choice of system and preparation protocols are known to
fully suppress crystallization [20,22,31,32]. Note that
applying this same preparation protocol to any other
contact potential form (e.g., Hertzian) would also result
in configurations that are valid hard sphere packings [[10]
Sec I]. Although the specific packing sensitively depends
on the choice of contact potential, algorithm details, and
initial configuration, similar structural scaling relations are
known to be robustly independent of this choice [13,16,22].
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We analyze the contact network at φJ by first eliminating
particles with Z < dþ 1 contacts, i.e., the rattlers (Fig. 2)
[23,24]. After this step, most configurations have
Nc ¼ ðN − 1Þdþ 1, where N is the number of remaining
particles. We discard the configurations for which this
condition is not satisfied [[10] Sec. IIC]. In principle, the

minimization procedure also outputs the force vector ~f,
but extracting small forces from it requires an even heavier
use of quad-precision arithmetics than what we have used
for the energy minimization [[10] Sec. IIC]. Instead, we

determine ~f as the zero mode of N for this packing [[10]
Sec. IF], for which double precision arithmetics suffices.
Because N is sparse, the eigenvector corresponding to
the zero mode can efficiently be extracted with the
Lanczos algorithm [[10] Sec. IIC], as implemented in
MATHEMATICA [33,34].
Results.—Figure 1 gives the cumulative force distribu-

tion GðfÞ ¼ R f
0 Pðf0Þdf0 for d ¼ 2, 3, and 4. In all cases, a

power-law scaling at weak forces is detected, but the value
of θf is found to increase with d. Recall that, over the same
d range, γ remains robustly constant [22] and is consistent
with γ ¼ 0.412 69 from the d ¼ ∞ solution [8,9]. The
changing value of θf with d is, therefore, inconsistent with
the scaling relations between exponents θ and γ in a
marginally stable phase [13–16].
Soft mode excitations suggest a possible way to resolve

this paradox [13,15,16]. The proposed mechanism for
localized excitations is for a particle to have all but one
of its contact vectors be nearly coplanar [13]. The remain-
ing contact must necessarily be weak (by force balance).
Breaking that contact should then result in facile back and
forth buckling. Because this motion does not affect the
rest of the packing much, the resulting excitation is fairly
localized (Fig. 2). Although a nearly coplanar arrangement

of neighbors is formally possible for a particle with any Z,
in a sufficiently disordered (noncrystalline) system, it
grows increasingly unlikely with Z. This arrangement is,
therefore, most likely to occur for particles that have the

FIG. 1 (color online). Cumulative force distribution GðfÞ for d ¼ 2, 3, and 4, in (a), (b), and (c), respectively. The distributions PðfÞ
(square), PlðfÞ (circle), and PeðfÞ (triangle) all show power-law scalings at small forces (in d ¼ 2, squares and circles are nearly
superimposed because of the large proportion of bucklers), but with different exponents. For the combined distribution, θf grows
steadily with d, but PlðfÞ and PeðfÞ are consistent with the exponents obtained by combining the d ¼ ∞ solution with marginal
stability arguments, i.e., θl ¼ 0.17462 and θe ¼ 0.42311, respectively. In d ¼ 2, the results for θe are consistent with those obtained by
ranking contacts based on the coupling of their related soft modes to external forces [13]. In d ¼ 3, comparing two system sizes,
Ni ¼ 16 384 (full symbols) and Ni ¼ 1024 (empty symbols), confirms the absence of significant finite-size effects.

FIG. 2 (color online). Schematic depiction of (left) rattlers and
(right) bucklers. At jamming, rattlers (also known as floaters—
green) are not part of the force network. Their neighbors (grey) are
part of the force network (red lines) and form a rigid cage within
which the rattler can freely move (dashed green line). By contrast,
bucklers are part of the force network (red and green lines), but
breaking their weakest contact (dotted-dashed green line) only
creates a localized excitation (top and bottom). Bucklers are, thus,
typically particles with d nearly coplanar stronger contacts and a
weaker dþ 1th contact that balances the resulting normal force.
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minimal Z for maintaining local stability, i.e., Z ¼ dþ 1.
Particles with Z ¼ dþ 1 contacts and for which one
contact is weak (we dub them bucklers) are also over-
whelmingly likely to have the other d contact particles be
nearly coplanar with the center of mass [[10] Sec. IID].
Any other arrangement would entail the presence of at least
two weak contacts, which is highly unlikely. In summary,
with high probability, all bucklers have dþ 1 contacts and
all particles with dþ 1 contacts and a weak force are
bucklers. In Fig. 1, we consider PlðfÞ the distribution of
all forces involving particles with dþ 1 contacts (and, thus,
all bucklers), and PeðfÞ that of the remaining contact
forces. This breakdown cleanly separates the power-law
regimes for θe and θl. Remarkably (this is our main result),
PlðfÞ ∼ fθl while PeðfÞ ∼ fθe , with exponents indepen-
dent of d and consistent with the d ¼ ∞ solution and the
scaling relations.

This finding also provides an explanation for the
behavior of θf . In order to see why, let us define
the distribution of the number of contacts PcðZÞ
[
P

ZZPcðZÞ ≈ 2d]. The fraction of forces adjacent to
bucklers is then nl ¼ ðdþ 1ÞPcðdþ 1Þ=2d, and the total
force distribution

PðfÞ ¼ nlPlðfÞ þ ð1 − nlÞPeðfÞ: ð2Þ

For large d, it is reasonable to expect that PcðZÞ ∼ edηcðZ=dÞ
becomes strongly peaked (in relative terms) around the
average of Z, and is roughly Gaussian around that average.
Figure 3 confirms this hypothesis, and as a result, Pcðdþ 1Þ
and nl ∼ Pcðdþ 1Þ=2 both decrease exponentially with d.
For small f, it follows that PðfÞ ∼ nlfθl þ ð1 − nlÞfθe .
Hence, it is correct that, asymptotically, one should observe
θf ¼ minðθe; θlÞ, but only when nlfθl ≫ fθe , i.e., for
forces exponentially small in d. This result explains why
no trace of bucklers nor of localized modes can be found in
the d ¼ ∞ solution, for which nl ¼ 0 and, thus, θf ¼ θe. It
also suggests that the contribution of bucklers cannot be
perturbatively detected around that solution either. In the
force regime that is numerically (and experimentally)
accessible in low d, however, an effective mixed value for
θf is observed, which is close to θl in d ¼ 2 and increases
smoothly towards θe as d increases, reflecting the systematic
decrease of nl.
Conclusion.—Our results demonstrate that the jamming

criticality remains robustly constant for d ≥ 2, although
the spurious contribution of rattlers and bucklers must be
excluded from the structural analysis in order to cleanly
detect it. This remarkable outcome confirms that certain
aspects of mean-field marginality subsist in finite-
dimensional systems, including in experimentally relevant
d ¼ 2 and 3 [8,9]. These results should, therefore, be
experimentally verifiable.
The theoretical explanation as to why long-wavelength

fluctuations do not renormalize the properties of jamming
criticality in these systems remains, thus far, unanswered
(see [35] for a preliminary investigation). One may argue
that the complete absence of thermal fluctuations at
jamming, and/or the presence of long-ranged elastic inter-
actions [17], play a role. This observation would then
suggest that marginal systems with other types of disorder,
be it related to constraint satisfaction or size dispersity, may
also exhibit similarly robust mean-field criticality upon
approaching their ground state. It is important to note,
however, that this universality does not imply that, away
from jamming, thermal fluctuations may not destroy the
mean-field marginal state structure and round off the
associated phase transitions [35].
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FIG. 3 (color online). (a) Probability distribution of the number
of contacts Z for particles within the force network (neglecting
rattlers) at jamming in d ¼ 2;…; 8, from left to right, for the
protocol described in the text. Note that the distribution peaks
around Z ¼ 2d. (b) Rescaling these distributions using a large-
deviation form shows the results to converge fairly quickly with
d. For this preparation protocol, the form is nearly Gaussian (red
line). The large deviation form suggests that the proportion of
particles with Z ¼ dþ 1 (and, thus, of bucklers) decays expo-
nentially with d, (inset) as is explicitly observed in finite
d (red line).
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