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Structure of marginally jammed polydisperse packings of frictionless spheres
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We model the packing structure of a marginally jammed bulk ensemble of polydisperse spheres. To this end
we expand on the granocentric model [Clusel et al., Nature (London) 460, 611 (2009)], explicitly taking into
account rattlers. This leads to a relationship between the characteristic parameters of the packing, such as the
mean number of neighbors and the fraction of rattlers, and the radial distribution function g(r). We find excellent
agreement between the model predictions for g(r) and packing simulations, as well as experiments on jammed
emulsion droplets. The observed quantitative agreement opens the path towards a full structural characterization
of jammed particle systems for imaging and scattering experiments.
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I. INTRODUCTION

The question of how to optimally pack objects of various
shapes in space has been of fundamental interest in mathemat-
ics and physics for centuries [1,2]. It is also highly relevant for
many practical problems ranging from storage and industrial
packing to the properties of soft materials such as emulsions,
foams, or granular materials [3–11]. Amorphous packings are
particularly difficult to understand due to the complexity of
disordered nonequilibrium structures. There exists a broad
agreement that disordered assemblies of spheres can be driven
into a solid state by filling space up to a certain critical
volume fraction φc ∼ 0.64 [12,13]. At this point, denoted
random close packing or jamming, the system is marginally
stable. Mechanical stability is provided by an average isostatic
number of contacts which in three dimensions is Z̄J = 6
for frictionless spheres [4,14,15]. The advent of powerful
simulation techniques over the last two decades has led to
numerous new results and predictions. Soft spheres can be
quenched into a compressed state φ > φc, and many relevant
physical quantities, such as the modulus or the pressure,
have been predicted to scale with the excess number of
contacts �Z = Z̄J − 6 [4,14]. Despite the recent progress
made, the experimental relevance of these predictions has
been questioned [15]. As a matter of fact there are only a few
experimental studies which attempt to verify the numerical
predictions [16–18] and study their relevance with respect to
bulk properties of practically relevant materials [19,20]. This
is partly due to the fact that the model assumptions made, such
as the interaction potential between spheres or the size distri-
bution, do not realistically reflect the situation in experimental
systems such as in emulsions, dispersions, or foams [4–6].
Another important shortcoming of numerical studies is that
these are generally carried out on real-space assemblies,
whereas many experiments rely on scattering techniques that
operate in k space. While real-space experiments are rather
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straightforward in two dimensions [16], they are much more
difficult to carry out in three dimensions [17], particularly
when other physical properties, such as mechanical strength
or internal dynamic modes, need to be studied as well. For
this case scattering techniques, often in combination with
mechanical shear measurements, have long been methods of
choice to study soft disordered materials in the bulk [21–
24]. Although scattering methods are highly appropriate for
soft systems, certain dynamic scattering methods can be
highly sensitive to the rattlers in polydisperse systems, e.g.,
leading to ensemble-average mean square displacements that
appear to relax more rapidly, compared to what would be
predicted from macroscopic rheology measurements using the
generalized Stokes-Einstein relation (GSER) [25] of passive
microrheology. A direct comparison between numerical results
and both structural as well as dynamic experiments, however,
is again complicated by the idealizations made in the models.
It would therefore be desirable to derive more general
concepts that allow a direct comparison between experiment
and theory.

In the present work we address this problem and demon-
strate how to model polydisperse sphere packings, taking into
account explicitly the population of mechanically unstable
particles, or rattlers. To this end we expand on the granocentric
model (GCM) introduced by Brujic and co-workers [26,27]
by uniformly distributing noncontact neighbors and by taking
into account size correlations between particle and shell. We
show that such an extended granocentric model (eGCM)
provides an accurate description of the statistical ensemble,
which in turn allows the comparison to measureable bulk
quantities such as the radial distribution function g(r). The
latter is one of the most important structural measures for
amorphous solids that is readily observable, both in a real-
space and in a scattering experiment, via the structure factor
S(k) = 1 + 4πρ/k

∫ ∞
0 dr r sin(kr)[g(r) − 1], where ρ is the

particle number density [28]. The importance of this quantity
has recently been pointed out when studying the vestige of the
jamming transition in an experiment both in two [18] and three
dimensions [29].
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II. THE EXTENDED GRANOCENTRIC MODEL

The granocentric model addresses the packing problem
from the perspective of a single particle. The statistical
properties of the local packing structure are obtained by the
random formation of nearest neighbors in a one-dimensional
model [26]. By numerical evaluation predictions are made
about the number of neighbors and contacts as well as the
local packing fraction of polydisperse spheres at random close
packing. Built upon the original model, an improved version,
denoted GCM 2.0 [27], was introduced by the same group soon
after. The latter can also be applied to monodisperse systems
while the original one could not. Despite these improvements
the GCM 2.0 still does not allow predictions to be made readily
about bulk quantities such as the radial distribution function.

To overcome this limitation, in our eGCM we explicitly
take into account rattlers and introduce some improvements to
the model as outlined in the following. We divide the particles
into two groups, mechanically stable jammed particles and
freely floating rattlers, then take averages over a representative
set of all particles rather than considering only particles in
contact. We first consider the probability of finding a central
particle with radius a which is equal to particle size distribution
p(a). The polydispersity PD = δa/ā is defined by the standard
deviation δa of p(a) divided by its mean ā = ∫

ap(a)da. For
the probability to find a neighboring particle of a certain size
p2(a), we explicitly consider the influence of size correlations
between particles and their shell, previously neglected [26].
Packing simulations suggest [30]

p2(a) ∝ p(a)[1 + (a/ā)2], (1)

which we are using here. Next we address the distribution
Gs(s) of surface-to-surface separations s = r − 2a. The latter
has to be modeled independently for the stable particles and
for the rattlers. We can use the scaling of the excess number
of contacts �Z ∼

√
Z̄J − 6 to derive GsJ (s) ∼ s−1/2 [31].

For the rattlers we take the simple ad hoc assumption that
their neighbors are distributed uniformly, GsR = const . The
shell of neighbors is bounded by a cutoff distance scutoff. Here,
we label particles that are in contact with J and particles
that are rattlers with R; if labels J or R do not appear, then
we are referring to all particles. The eGCM can be evaluated
numerically and we can obtain statistical information directly
from the model. However, a more general approach would be to
reduce the discussion, e.g., of the radial distribution function,
to its dependence on a small set of characteristic parameters,
such as the average number of neighbors (N̄J ,N̄R) of jammed
or rattling particles, the fraction of rattlers q, and the distance
scutoff. To this end we can write

g(r) = 1

4πr2ρ

∫
f (x)Gs(r − x)dx, (2)

where f (x) = ∫
p(a)p2(x − a)da is the probability of

finding a central particle with radius a and another
neighboring particle with radius x − a, for all possible a and
Gs(s) = (1 − q)GsJ (s) + qGsR(s). The link to the average
number of neighbors is established by normalization via
GsR(s) = N̄R/scutoff and

GsJ (s) =
{

6δ(0) (s = 0),
1
2 (N̄J − 6)(scutoffs)−

1
2 (s > 0).

(3)

FIG. 1. (Color online) Granocentric model. Modeling the shell
of first neighbors of a central particle with radius ac using a
one-dimensional statistical approach. Particles with radius a are
drawn randomly from a distribution p2(a) and added one after another
as explained in the text. The solid angles occupied by the already
added particles are shown as colored blocks. The remaining accessible
solid angle for subsequent additions is denoted �a . The dashed line
indicates the threshold solid angle �max.

The numerical implementation of our eGCM is guided by
the original work [26,27], albeit with some modifications.
In practice we start by considering a particle that is closely
surrounded by neighbors. The size of this central particle is
randomly chosen from the size distribution function p(a). The
solid angle occupied by a neighbor can be characterized by:

ω = 2π

(
1 −

√
1 −

(
a

a + ac + s

)2)
, (4)

where ac and a are the radii of the central particle and the
neighboring particle, respectively, and s is again the surface-
to-surface separation. For a given central particle, its neighbors
cannot fill up the whole solid angle 4π due to geometrical
constraints [26]. We thus introduce a threshold solid angle as
�max, as illustrated in Fig. 1.

Neighbors are added one at a time, with sizes randomly
chosen from the size distribution of neighbors p2(a). The
probability that an added neighbor is in contact with the central
particles is assumed to be

c = α

(
�a

�max

) 3
2

, (5)

where �a is the accessible solid angle and α is an adjustable
prefactor. Noncontact neighbors are placed according to
Eq. (3). Then neighbors are added consecutively until the
total solid angle exceeds the threshold �max. In half of the
cases, chosen randomly, we either add or remove the last added
neighbor with equal probability.

Relation (5) in our model can be motivated as follows:
Using a constant probability of contact (as it was done in
Ref. [26]) will lead to an overestimation of the fraction of
rattlers. This can be seen when considering a monodisperse
system with an average number of ∼14 neighbors. This implies
for the contact ratio c = 6/14 � 0.43 and we can easily cal-
culate the ratio of rattlers (particles with Z < 4) by summing
the probabilities of having only Z = 0,1,2 or 3 contacts

q = (1 − c)14 +
(

1

14

)
(1 − c)13c +

(
2

14

)
(1 − c)12c2

+
(

3

14

)
(1 − c)11c3 = 0.084, (6)

where (nk) is the combination operator. This value is
distinctively higher than the value for monodisperse packings
observed in packing simulations, known to be of the order
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of ∼2% [30]. Using the probability of contact given by
Eq. (5), however, we find excellent agreement with packing
simulations, both for monodisperse and polydisperse packings,
as shown later in the text. For the numerical evaluation of
the eGCM, a limited set of input parameters is taken from
packing simulations [30]. The latter suggest isostatic values
N̄J = 14.3 and φJ

c = 0.62 for the jamming volume fraction
of spheres in contact, independent of polydispersity [30,32].
Shells are filled up to a maximum solid angle �max, treated
as an adjustable parameter in the numerical evaluation of the
model. We generate 50 000 neighboring shells following the
generic approach of Refs. [26] and [30]. Central particles
with a contact number Z < 4 are considered as rattlers and
all their neighbors are redistributed uniformly. Z̄J is obtained
by taking the average over all central particles with Z � 4.
We adjust α,scutoff,and �max until Z̄J ,N̄J , and φJ

c converge
towards their isostatic values and thus obtain predictions for
N,Z,q, and φc. Moreover, we find scutoff/ā ∈ [0.75,1] and
�max ∈ [3.33π,3.53π ] (see also Ref. [26]). To calculate the
volume fraction φ directly from the eGCM results, we follow
the approach introduced in Ref. [26]. For each neighbor, a
cone is formed by its corresponding solid angle. Using the
Voronoi radical tessellation surface at the bottom of this
cone, a corresponding volume can be calculated. Summing
up all neighbors of a central particle i, the cell volume V i

cell
is obtained. Since the actual total solid angle �total < 4π , we
use V i

cell
4π

�i
total

as the total cell volume of the ith particle. Thus

the volume fraction can be written as

φ =
∑

i V
i

particle∑
i V

i
cell

4π

�i
total

. (7)

III. EXPERIMENTS

We compare the model predictions with experiments on
micron-scale emulsion droplets under marginal jamming
conditions. For the experiments we prepare a 3:1 mixture
by weight of polydimethylsiloxane (PDMS) and silicone
oil (AR200) and emulsify it with sodium dodecyl sul-
fate (SDS) surfactant in water by shearing in a custom-made
Couette shear cell. Stabilized with SDS, the droplets are
fractionated by size using depletion sedimentation [33]. The
size segregation is repeated until the desired polydispersity
is reached. Subsequently the surfactant SDS is exchanged
by the block-copolymer surfactant Pluronic F108, in order
to sterically stabilize the droplets. Finally, formamide and
dimethylacetamid (DMAC) are added to the solvent in order
to match the density and refractive index simultaneously under
experimental conditions at room temperature T = 22 ◦C.
Optical contrast between the droplets and the dispersion
medium is obtained by adding the fluorescent dye Nile red.
Although the dye is present both in the solvent and the
oil, the emission spectra are different, which allows one to
clearly distinguish both phases, as shown in Fig. 2(a). The
particle size and polydispersity are obtained from wide-field
microscopy. For the polydispersities considered we find the
size distribution of the emulsion droplets to be close to
log-normal. Equally, simulation data and the eGCM are
evaluated for two-parameter log-normal size distributions.
Here we include experimental data for three droplet radii:

FIG. 2. (Color online) Three-dimensional imaging of jammed
emulsions droplets with an average droplet radius ā = 1.05 μm.
(a) Raw image of a plane in the bulk of the sample obtained by
laser-scanning confocal microscopy of light emitted by the fluorescent
dye Nile red at λ = 595 nm. The droplets are marginally jammed
and the volume fraction is φ � 0.646 ± 0.014. (b) 3D reconstruction
of the droplet positions using the sphere-matching method (SMM).
The lines show the Voronoi radical tessellation around the droplet
centroids. The total dimensions are 51.2 × 51.2 × 20.1 μm. One
corner is cut out to reveal the internal structure of the jammed system.

ā = 1.1 μm with a polydispersity PD = 0.105, ā = 1.07 μm
with a polydispersity PD = 0.12, and ā = 1.05 μm with a
polydispersity PD = 0.147, respectively. By lowering the
temperature to 4 ◦C, a slight density mismatch is induced
and the sample can be spun down to densities at and above
jamming. Several hundred microliters of the jammed sample
are placed in a cylindrical cell tightly connected with UV-
curable glue to a microscope cover slip which allows imaging
from below in an inverted microscope. High-resolution images
of the individual droplet positions are obtained using three-
dimensional (3D) laser-scanning confocal microscopy (A1R,
Nikon, Japan). The dye is excited with a 488-nm laser line
and two emission channels (525 ± 50 and 595 ± 50 nm) are
recorded simultaneously to improve the quality of the analysis.
3D images of size 512 × 512 × 201 pixels are recorded with
a resolution of 100 nm/pixel in all spatial directions. For
every stack of images, the acquisition time is 100 s. To track
the position of the polydisperse droplets, we implement the
sphere-matching methods (SMMs) algorithm [34]. A Voronoi
radical tessellation is applied and particles with adjacent cell
walls are identified as neighbors [Fig. 2(b)]. We find the
lateral position accuracy to be approximately 15 nm and axial
accuracy 30 nm. In order to identify the point of marginal
jamming, the sample is diluted in steps of ∼0.5% in volume
fraction. From a time series of two-dimensional (2D) images
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we can easily identify the liquid-to-solid transition, that in our
case sets the jamming volume fraction φc. From the droplet
positions in 3D we calculate the radial distribution function
g(r) and take an average of over 20 image stacks in order to
improve the statistical accuracy.

IV. RESULTS AND DISCUSSION

We first compare the eGCM predictions (squares) to
simulations (circles) of disordered packings of spheres as
shown in Fig. 3. Details of the simulations are discussed
elsewhere [30]. Briefly, spheres are placed at random in a
3D periodic cell and the size of the spheres is drawn from
the distribution p(a). The sphere sizes are then increased in
unison until the desired packing fraction φc is reached. Spheres
are assumed to interact through purely repulsive body-centered
forces and the overlap between two particles in contact leads to
a harmonic interaction potential. A conjugate gradient method
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FIG. 3. (Color online) (a) Average number of first-shell neigh-
bors N̄ of jammed particles (full symbols) and rattlers (open
symbols) versus polydispersity (PD). Squares denote the results
from the extended granocentric model (eGCM) and circles shows
the data from numerical simulations. The dashed line indicates a
constant value of N̄J = 14.3. (b) Fraction of rattlers q predicted
by the eGCM (open squares) and from simulations (open circles).
Inset: Predicted jamming volume fraction φc for all particles as a
function of polydispersity. Dashed line: parabolic fit φc = (0.634 +
0.0278) PD + (0.196) PD2. Solid line: jamming volume fraction for
particles in contact φJ

c = 0.62.
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FIG. 4. (Color online) Probability distribution functions as a
function of (a) number of nearest neighbors N and (b) number
of contacts Z for a polydispersity PD = 0.15. Solid line: eGCM;
squares: simulations; bars: experiments on emulsion droplets with an
average droplet radius ā = 1.05 μm. The eGCM and the simulations
assume a log-normal size distribution. The size distribution of the
emulsion is also close to log-normal with PD � 0.15 ± 0.01.

is used to minimize the overlap between spheres and hence the
total energy of the packing [35].

Figure 3 shows the average values N̄ , N̄R , and q as a
function of polydispersity. We note immediately that N̄R

rapidly decreases with polydispersity. This can be explained
by the fact that with increasing polydispersity more rattling
configurations are created by placing large particles next to
a central particle. Since large particles occupy a more solid
angle, fewer neighbors can be placed around a rattler and thus
N̄R decreases. Equally good agreement is obtained for the
average number of neighbors N̄,N̄R , the fraction of rattlers
and the jamming volume fraction (Fig. 3 and inset). In Fig. 4
we show the results obtained for the probability distribution
of the number of neighbors N and contacts Z for a typical
polydispersity of PD = 0.15. The experimental results are in
excellent agreement with both the packing simulations and the
eGCM model.

In Fig. 5(a) the model predictions for the radial distribution
function are compared to the g(r) derived from the experi-
mental droplet positions. While for perfectly monodisperse
packings the peak value g1 should diverge at the jamming
transition, this divergence is avoided for a size distribution of
finite width. We find nearly quantitative agreement between
all three data sets. Small deviations between the experimental
g(r) and the numerical predictions can be attributed to the
limited accuracy in the experiment when determining the exact
location of the particles [36]. Also, the prediction by Eq. (2)
becomes less accurate as r approaches scutoff + 2ā. Extracting
the peak value g1 shows excellent agreement over a broad range
of PD values, as shown in Fig. 5(a). Moreover, we include a
data point obtained for 3D assemblies of microgel particles
with a mean size ā � 0.5 μm and a PD � 0.1 taken from [29]
and again find excellent agreement. Equally good agreement is
obtained for the width of the first peak, as shown in Fig. 5(b).
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derived using the original GCM (neglecting rattlers) [26]. The
solid line shows the prediction by Eq. (2). Diamonds: experimental
results for polydisperse emulsions. Full circles: packing simulations.
Star: experimental results for microgel particles, Ref. [29]. Inset:
The first maximum of the radial distribution function g(r) for a
polydispersity PD = 0.05 (left) and PD = 0.15 (right). Prediction
by Eq. (2) (solid line), the eGCM (open black squares), simulations
(full red circles), and the emulsion experiments (open blue diamonds),
PD � 0.15 ± 0.01. (b) Normalized FWHM.

We note that in practice, for a known polydispersity, g(r) can
be plotted directly using Eqs. (2) and (3) with input parameters
N̄R,q taken from Fig. 3 and scutoff/ā ∼ 0.8.

Finally, we illustrate briefly that the application of the
eGCM is not restricted to log-normal particle size distributions.
Other distributions such as Gaussian, linear, or bimodal can
also be considered. A simple way to differentiate between these
distributions is to introduce the skewness S = 〈δa3〉/〈δa2〉3/2

as an additional characteristic parameter. Recently published
simulations have shown that the critical packing fraction
φc depends both on the skewness and the polydispersity
but is almost independent of other details of the shape of
p(a) [37]. In Fig. 6 we show a comparison between the
eGCM predictions and these packing simulations reported
in Ref. [37]. For clarity we restrict the discussion here to
binary distributions. We find that for weak and moderate
polydispersities both data sets agree well, while for extreme
values of S and PD some deviations are observable. For
linear distributions we obtain similar results (data not shown).
The results for log-normal distribution are already shown
in Fig. 3 and in this case polydispersity and skewness are

FIG. 6. (Color online) Critical volume fraction φc for binary
particle size distributions with different polydispersity (PD), δa/ā,
and skewness S. The lines denote predictions by the eGCM, and the
full symbols represent the results from packing simulations taken
from Ref. [37].

coupled. For truncated Gaussian distributions, S � 0 for the
weak-to-moderate polydispersities considered here.

V. SUMMARY AND CONCLUSIONS

In the present work, we have derived an extended granocen-
tric model (eGCM) with the aim of providing a quantitative
framework for modeling a bulk ensemble of polydisperse
jammed spheres. Compared to the original approach [26,27],
our improved model makes predictions for a number of
key quantities that could not be treated within the original
framework. The latter includes the radial distribution function
g(r) of all particles and the polydispersity-dependent critical
jamming volume fraction φc. Many physical properties, such
as the elastic modulus, can change very rapidly in the vicinity
of φc, so even small changes in the φc predicted by various
models can have an important impact on such observed
physical properties. The main features of our approach can
be summarized as follows. First, we have included noncontact
neighbors, or rattlers, in our model, which we distribute
uniformly as the simplest generalization. Second, we take into
account size correlations between a chosen central particle
and the particles in the shell [Eq. (1)]. This assumption is
motivated by recent packing simulations [30]. Third, we allow
the contact probability for added particles to depend on the
residual available solid angle [Eq. (5)]. The latter is physically
sound, and it is also required in order to obtain meaningful
predictions for the jamming volume fraction φc for different
polydisperse distributions. From an extensive comparison with
experimental data and packing simulations, we demonstrate
that our extended granocentric approach can deliver accurate
predictions for a bulk ensemble of marginally jammed particles
covering the full range of polydispersities of practical interest.
Furthermore, we have tested the model for different skewed
particle distributions and find good agreement with packing
simulations [37]. The obtained quantitative modeling of g(r)
in turn provides a direct link between static structure factor
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S(q) and the structure of the packing. From a more general
perspective the model can provide a framework for the
interpretation of confocal microscopy, static and dynamic
light-scattering experiments that can all be sensitive to the
heterogeneities of the packing close to the jamming transition.
A future extension of the model towards higher densities,
taking into account finite particle compression, would open
the path towards a full structural characterization of the bulk
ensemble of polydisperse jammed particle systems.
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