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Geometric order parameters derived from the
Voronoi tessellation show signatures of the
jamming transition†

Peter K. Morse*a and Eric I. Corwinb

A jammed packing of frictionless spheres at zero temperature is perfectly specified by the network

of contact forces from which mechanical properties can be derived. However, we can alternatively

consider a packing as a geometric structure, characterized by a Voronoi tessellation which encodes the

local environment around each particle. We find that this local environment characterizes systems both

above and below jamming and changes markedly at the transition. A variety of order parameters derived

from this tessellation carry signatures of the jamming transition, complete with scaling exponents.

Furthermore, we define a real space geometric correlation function which also displays a signature of

jamming. Taken together, these results demonstrate the validity and usefulness of a purely geometric

approach to jamming.

1 Introduction

Over the past two decades the jamming of athermal frictionless
spheres has been seen as the limiting case of several different
kinds of systems.1–6 Athermal soft sphere systems can be brought
to the limit of zero internal energy and isostaticity, achieving a
critically jammed system which is typically characterized by
mechanical properties.2,5,7–10 However, when such systems are
below the jamming density there is no longer a mechanical
network of force-bearing contacts and so mechanical order
parameters are all identically zero. Conversely, hard sphere
thermal liquids are studied below the glass or jamming transi-
tion and are characterized by dynamic quantities such as
mobility and pressure.4,6,11 As density is increased they reach
the limit of diverging reduced pressure and become a critically
jammed system. Above this density, hard sphere systems can
not exist. While both athermal soft sphere systems and thermal
hard sphere glass systems have been successful models for
predicting and measuring scaling exponents of various para-
meters near the jamming phase transition,2,4,6,10 neither of these
model systems speak to the behavior of unjammed athermal
systems. This leaves a gap in the understanding of the athermal
jamming transition. In this paper we introduce new geometric
order parameters which characterize the athermal jamming

transition both above and below jamming, placing both sides
of the transition on equal footing and providing a meaningful
way to interrogate soft sphere systems below the jamming
transition.

The structure of jammed systems has long been studied in
terms of geometry12–18 however a systematic study of geometric
changes as a function of distance to the transition has not
yet been performed. The Voronoi tessellation,19 which is well
defined at all packing fractions, provides a natural lens through
which to study both unjammed and overjammed systems. In
previous work we have demonstrated that the number of facets
(corresponding to the number of nearest neighbors) provides a
good order parameter for the jamming transition.20 This order
parameter raised a new problem, however, because it exhibited
an upper critical dimension (above which, all order parameters
share the same scaling laws) of d = 3. This stood in contrast to
the well known fact that mechanical order parameters exhibit
an upper critical dimension of d = 2.2,21 This, coupled with the
recent success of replica theory in predicting high finite dimen-
sional scaling6 has motivated us to explore a range of geometric
order parameters in dimensions ranging from d = 2 to d = 5.

In this paper we show that most geometric properties of the
Voronoi tessellation are controlled by the jamming point fJ,
suggesting that jamming can be described in purely geometric
terms. Further, we present a new geometrically defined correla-
tion function which changes qualitatively at the jamming transi-
tion. Surprisingly, none of these measures show any indication
of the previously discovered pre-jamming transition, associated
with the maximum inscribed sphere of the Voronoi cell, which
we have found to happen at a density f* o fJ.
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2 Generating a packing

We simulate packings of frictionless athermal particles with a
harmonic contact potential in periodic boundary conditions as
described in references.20,22 In d = 3–5, we use monodisperse
spheres, and in two dimensional systems, we use a 50 : 50
mixture of bidisperse disks with a ratio of radii that is 1 : 1.4,
known to show mechanical jamming. We present data obtained
with three packing protocols: Infinite Quench (IQ),2 Geometric
Mean (GM),20,22 and Energy Sweep (ES).6

Our three protocols differ only in how jamming is approached.
All begin with a set of particles in random positions at a specified
density. The energy of this system is then minimized to find the
so-called inherent structure, found at the local energy minimum.
Each of these protocols works as an iterative process by finding
the inherent structure at a given density and then using this
packing as the seed to find a minimized packing at a new
density.

The IQ protocol begins with a random packing at zero
density. Every particle is inflated to achieve a new packing at
a specified higher density and this packings energy is then
minimized. The results of this minimization are then used to
create a denser packing, and so on. This proceeds in linearly
spaced steps of packing fraction until the desired range of
packing densities is covered. The range is chosen to cover
densities from f = 0 to f = 2fJ. The limits of this range are
somewhat arbitrary but are chosen to be symmetric about fJ.
While the most relevant region is near the transition point, we
include data at both the high and low extremes for complete-
ness. Data for d = 3–5 uses 65 536 (216) particles, while d = 2 uses
16 384 (214) particles.

The GM protocol is designed to zero in on the transition
point, either approaching from above or below, without ever
overshooting. In this manuscript, we only report on GM systems
approaching from below because the ES protocol (described
below) converges much faster when approaching from above.
The GM protocol requires an initial bounding of the jamming
point by choosing two densities, one above and one below. A
packing is initially created at the lower bound and its energy
minimized. A new packing is created between the upper and
lower bounds using the original packing as its seed. If this
packing is below jamming (taken to mean an energy per
particle of o10�20), it becomes the new lower bound and serves
as the next seed. If, however, this packing is found to be above
jamming it is discarded and its density is used as the upper
bound in picking a new intermediate density. This proceeds
until we approach the jamming point to within our energy per
particle tolerance of 10�20. In this way we are able to create a
packing right at the edge of jamming that is the result of only
inflationary steps, without ever crossing into the jammed regime.
Because the convergence is slow, we are only able to report on
8192 (213) particles.

The ES protocol is limited in that it can only serve to
approach jamming from above, but as previously mentioned,
it converges faster than GM. The ES protocol exploits the scaling
of system energy with excess packing fraction E p (f � fJ)

2 to

gently approach jamming from above, creating nsteps logarith-
mically spaced packings per decade. Given an initial system
density fi, system energy Ei, and a guess for the jamming
density ~fi we calculate the packing fraction for the next
system as

fi+1 = ~fi + (fi � ~fi)10�1/nsteps. (1)

Once this new system’s energy is minimized we compute a
better estimate for the true jamming density as

~fiþ1 ¼
fiþ1 � fi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei=Ei�1

p
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei=Ei�1

p : (2)

This process continues until we achieve an energy per particle
of 10�20.

We choose the starting point of the approach to be approxi-
mately 2fJ. It has been previously shown that the jamming
density when approaching from above is dependent on the
initial packing density for systems that start close to fJ. When
the initial packing density is significantly high, however, the
value of fJ is independent of the initial packing density.22 We
choose to start at such a high value of f to ensure that our
results are independent of the starting density.

All ES data sets use 16 384 (214) particles. Data for d = 2, d = 3,
and d = 4 are averaged over 10, 63, and 79 systems respectively
while data for d = 5 is taken from a single system.

3 Geometry of the Voronoi tessellation

Given a packing created via any of our protocols and in any
dimension we calculate the Voronoi tessellation using an in-house
implementation of the algorithms described by Boissonnat and
Delage23 as used in our previous work20 and extract the associated
vertices using the Delaunay triangulation.24 For the monodisperse
packings we create in d = 3–5, this Voronoi tessellation is the
standard Voronoi tessellation wherein the size of a cell is
independent of the size of the particle. However, due to
the bidispersity used in d = 2 we use the radical Voronoi
(or Laguerre) tessellation,19 which makes the boundaries
between cells the bisecting plane between the particle edges.
This preserves the convexity of each cell and thus provides a
natural extension of the classical Voronoi cell. From each
Voronoi cell, we extract all of our measurements. The number
of facets of the Voronoi tessellation gives us (1) the number of
nearest neighbors N; the vertices of the Voronoi cell allow us to
calculate (2) the surface area S and (3) the volume V; the ratio
between the largest and smallest possible distances between
parallel planes kissing the cell defines (4) the aspect ratio A;
finally, the dot product between the headless vectors defining
the aspect ratio provides (5) the cosine of the cell’s internal
angle y.

3.1 Volume and surface area

Volumes and surface areas can be calculated easily by breaking
the cell into simplices. To find volumes and surface areas we
exploit the fact that the d-dimensional volume of a d-simplex
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can be calculated from the generalized triple product of its
vertices. The Delaunay triangulation of the surface of a Voronoi
cell breaks down the surface of each facet k into a number of
(d � 1) dimensional simplices labeled by the index m. There are
d-vertices association with each simplex, which we denote as
-
vm,i where i ranges from 1 to d, and we denote the outward
facing normal vector to a facet k as n̂k. From this, the surface
area of each facet is calculated as the sum of the surface of all of
its constituent simplices as

Sk ¼
X
m

n̂k � ~vm;1 �~vm;d
� �

^ � � � ^ ~vm;d�1 �~vm;d
� �� ��� ��

ðd � 1Þ! ; (3)

where 4 denotes the d-dimensional wedge product. The
total surface area of a given Voronoi cell is then the sum of all
facets

S ¼
X
k

Sk: (4)

By choosing an interior point of the cell -
r, we can subdivide

the volume of the cell into a number of d-simplices whose
volumes sum to the volume of the cell as

V ¼
X
m

~vm;d �~r
� �

� ~vm;1 �~vm;d
� �

^ � � � ^ ~vm;d�1 �~vm;d
� �� ��� ��

d!
:

(5)

For a given packing, the mean cell volume is just the simu-
lation volume divided by the number of particles. The distribu-
tion of cell volumes, however, does change, and so we report on
Ṽ, the ratio of the standard deviation of the volume distribution
to the mean. We also report on the mean of the unitless surface
to volume ratio S/V(d�1)/d.

3.2 Aspect ratio and internal angle h

The ratio of surface area to volume S/V(d�1)/d defines a simple
notion of an aspect ratio, but one that is insensitive to the
anisotropy of the cell. We define another aspect ratio, explicitly
sensitive to anisotropy by looking at the ratio between the
longest one dimensional span in a cell to the shortest one
dimensional span of a cell (Fig. 3). To calculate this aspect ratio

we define the long axis~‘ as the maximum distance between any
pair of vertices and the short axis -

s as the minimum of the set of
maximum distances between each vertex and each facet. Given
a set of vertices -

vi and introducing a point -
pk on each facet k,

these definitions can be formalized as

~‘ ¼ ~‘
��� ~‘��� ��� ¼Maxij ~vi �~vj

�� ��n o
; (6)

and

-
s = {-s|J-sJ = Mink(Maxi|n̂k�(

-
vi �

-
pk)|)}. (7)

The aspect ratio is then simply defined as

A ¼
~‘
��� ���
~sk k : (8)

We can further measure the skewness of a cell by defining
the angle between the long axis and the short axis as

cos y ¼
~‘ �~s
��� ���
~‘
��� ��� ~sk k; (9)

where the absolute value is taken because ~‘ and -
s are headless

vectors.

3.3 Correlation function

We can examine the interaction of each cell with its neighbors
by defining a correlation function based on the angle between
the axes of pairs of cells. When cells are packed together to fill
space neighboring cells must share facets, potentially causing the
axes to align. To characterize this we measure the cosine of the

angle between two long axes ~‘i and ~‘j associated with particles
i and j respectively (illustrated in Fig. 3). Because the axes are
headless vectors we must use the formalism of directors, giving
rise to the definition for the cosine as

cos aij ¼
~‘i �~‘j
��� ���
~‘i

��� ��� ~‘j

��� ���: (10)

To compare systems in different dimensions, we must first
calculate the expectation values of completely uncorrelated
directors. The expectation value of the cosine of the angle in
dimension d is given by

hcos aid ¼
Ð p=2
0 cos asind�2 adaÐ p=2

0
sind�2 da

¼
G

d

2

	 


ffiffiffi
p
p

G
d þ 1

2

	 
: (11)

The standard deviation of the angle between uncorrelated directors

in dimension d is defined as sd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcos aid 2 � cos2 ah id

p
. There-

fore we also calculate the expectation of the square of the cosine
of the angle of uncorrelated directors as

cos2 a
� �

d
¼
Ð p=2
0 cos2 asind�2 adaÐ p=2

0 sind�2 da
¼

G
d

2

	 


2G d þ 1

2

	 
: (12)

Thus we find the standard deviation of uncorrelated directors
in dimension d to be

sd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

d

2

	 
2

pG
d þ 1

2

	 
2
�

G
d

2

	 


2G d þ 1

2

	 


vuuuuuut : (13)

We define our correlation function as the normalized value of
the cosine of the angle between the long axes of every pair of
particles as a function of the distance between cells as

C‘ðrÞ ¼
X
ij

d ~ri �~rj
�� ��� r
� �cos aij � hcos aid

sðdÞ : (14)
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We note that this correlation function, relating the shape and
asymmetry of Voronoi cells, is logically distinct from the pair
correlation function, or indeed from any correlation function
based solely on particle positions.

4 Analysis
4.1 Order parameters

Fig. 1 presents the geometric order parameters described above
calculated for systems created with all protocols as a function of
distance to fJ for d = 2–5. Data across multiple dimensions is
presented on the same scale by subtracting off the value at the
jamming transition and then dividing by that same value. The
packing fraction is similarly scaled as (f � fJ)/fJ. Below
jamming all of these parameters change rapidly with increasing
packing fraction. Jamming is marked by a sharp kink and above
jamming they evolve with a much gentler slope.

For all measures except the surface area to volume ratio the
d = 2 data does not seem to collapse onto the same family of
curves as the higher dimensions. Because the d = 2 packings
are bidisperse we show separate curves for each particle size
(shown in dark and light gray) and a single curve representing
the combined data (shown in black). The difference is espe-
cially apparent in the surface area: the Voronoi surface area
increases for larger particles and decreases for smaller particles
as jamming is approached from below. This makes intuitive
sense; at extremely low packing fractions the Voronoi cells for
the two sets of particles should be almost identical and near
jamming the larger particles will end up having a larger surface
area and a larger volume than their smaller counterparts. In the
combined data, the surface area curve collapses to follow the
trend observed in d = 3–5, which is somewhat surprising
considering the very significant geometric structure of bidis-
perse packings versus monodisperse. However, when con-
sidering each size separately, this universality is broken. For
completeness we provide data on 3d bidisperse systems in the
supplementary material. These 3d bidisperse systems do not
always exhibit the same behavior as monodisperse systems,
however they always show power-law scaling when approaching
jamming.

In order to explore the behavior very close to jamming we use
the GM protocol to approach from below and ES to approach
from above. In this way we obtain packings that converge
logarithmically on fJ. Plotted on a log–log scale (Fig. 2) we find
that each parameter scales with its own power-law on both sides
of the transition with power law values and critical values listed
in Table 1. We have previously demonstrated that the mean
number of neighbors hNi scaling is consistent with a power of
B0.7.20

Below jamming, there must be a limit to the scaling regime.
The mean surface area hSi, volume hVi, and number of facets
hNi of Voronoi cells at f = 0 and their respective dimensional
dependence can be semi-analytically determined.12,25–27 The
same should be true for aspect ratio hAi and internal angle
hcos yi but to our knowledge those studies have not yet been

done. This is responsible for the changes in curvature seen at
low f in Fig. 1.

While most of the power laws work well over at least
five decades, there are a few exceptions. The data from below

Fig. 1 Plots of scaled order parameters vs. the scaled packing fraction.
Closed circles represent IQ data, x’s represent GM data (from below), and
triangles represent ES data (from above). Note that on this linear scale the
GM and ES data is nearly all clustered right at fJ. The parameters shown
are (a) mean surface area, S, (b) standard deviation of volume divided
by the mean of the volume, Ṽ, (c) mean surface to volume ratio S/V(d�1)/d

(d) mean aspect ratio, A, and (e) mean aspect ratio angle cos y. We plot data
for d = 2 (smaller particles light gray, larger particles dark gray, combined
black), d = 3 (green), d = 4 (red), and d = 5 (blue).
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is very sparse, and so we cannot claim that the power laws fit
exactly and can only suggest that the plots look like power-laws

within the plotting area. Precise claims about the scaling
exponents of these power laws would require a method which

Fig. 2 Log–log plots of each scaled order parameter vs. the scaled packing fraction approaching jamming from below (left) and above (right). Closed
circles represent IQ data, x’s represent GM data (from below), and triangles represent ES data (from above). The parameters shown are (a and f) mean
surface area, S, (b and g) standard deviation of volume divided by the mean of the volume, Ṽ, (c and h) mean surface to volume ratio S/V(d�1)/d (d and i)
mean aspect ratio, A, and (e and j) mean aspect ratio angle cos y. We plot data for d = 2 (smaller particles light gray, larger particles dark gray, combined
black), d = 3 (green), d = 4 (red), and d = 5 (blue).
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approached jamming more predictably from below and which
converged much faster so that averaging could be used, as it is
done above jamming.

It is also important to note that the d = 2 data deviates
significantly in the standard deviation of the volume for particle
sizes considered separately (Fig. 2g) and the internal angle for
all cases (Fig. 2j). What is unclear is the extent to which this
non-universal behavior is due to the dimension or the bidis-
persity. We can probe this question by examining the d = 3
bidisperse system which is presented in the supplement. Unlike
the d = 2 bidisperse system, the d = 3 case shows non-universal
behavior even in the combined statistics. This suggests that the
fault lies in the polydispersity and perhaps not the dimension
as was claimed in our earlier work.20 It is not surprising that
adding polydispersity will change the behavior of these detailed
geometric properties. The result is that it is impossible to
decouple the effects of polydispersity from those of dimension
in causing the non-universal d = 2 behavior.

4.2 Correlation function

From the measurements of the aspect ratio we can see that at
jamming the Voronoi cells are much more isotropic than they
are far from jamming. At jamming, the aspect ratio is close to
1 and the direction of the long and short axes are uncorrelated
as measured by cos y. In contrast, at very low density the cells
are elongated and have a large aspect ratio and axes that are

Table 1 Scaling laws and critical values for all parameters w, such that

w� wJ
wJ

/ f� fJ

fJ

	 
g

. Critical values quoted have their error in the least

significant digit, which is reported in parentheses. Both GM and ES data
agree on each critical value. All critical values are unitless except for SJ

which is reported as the unitless SJN(d�1)/d
particles. For d = 2, we report separately

on wJ values for the larger particles, the smaller particles, and the system as
a whole

Parameter w N S Ṽ S/V(d�1)/d A cos y

Appx. power g 0.7 1.0 0.75 1.0 0.75 0.33
wJ, d = 2, large 6 3.00(5) 0.03(1) 3.73(8) 1.22(1) 0.56(7)
wJ, d = 2, small 6 2.27(5) 0.04(7) 3.82(7) 1.30(6) 0.55(9)
wJ, d = 2, all 6 2.64(0) 0.29(5) 3.78(2) 1.26(4) 0.56(3)
wJ, d = 3 14.29 5.3(8) 0.03(8) 5.3(8) 1.32(2) 0.42(9)
wJ, d = 4 32.74 6.8(7) 0.03(6) 6.8(8) 1.3(7) 0.38(5)
wJ, d = 5 74.62 8.2(6) 0.03(4) 8.2(6) 1.4(1) 0.35(0)

Fig. 3 Illustration of the aspect ratio axes in two Voronoi cells. For each cell,
the short axis is shown in green (short dashes) and the long axis is shown in
orange (long dashes). The angle y between the two axes is defined to be the
acute angle between the short and long axis. The angle a between two long
axes of different cells is also shown.

Fig. 4 The normalized long axis correlation between Voronoi cells plotted
as a function of distance between particles in d = 2–5. Correlations are
shifted vertically to show the effect of changing f with a color scheme that
fades from purple (f = 0) to black (f = fJ) to green (f = 2fJ). Gray dashed
lines show the line corresponding to completely uncorrelated axes, open
circles denote minima and open stars represent secondary maxima. A black
line has been drawn over each curve representing the Savitsky–Golay filter.
Data obtained using the IQ protocol.
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nearly perpendicular. Fig. 4 shows the measured correlation
function between the long axes as a function of interparticle
distance for packing fractions ranging from f = 0 to f = 2fJ in
dimensions d = 2–5. Far below jamming, neighboring particles
are highly correlated. This correlation decreases with increasing
distance, showing an anti-correlated dip at intermediate dis-
tances and then finally decaying to completely decorrelated at
large distances. At jamming, the correlation function changes
qualitatively, marked by the appearance of a positive correlation
peak at intermediate distances in addition to the short distance
dip. Both the dip and the peak become more prominent and
sharpen at higher packing fractions. These extrema are found
using a cubic Savitzky–Golay filter with a span of 51 data points28

and the positions of the dip and peak are indicated by circles
and stars respectively in Fig. 4 and plotted as a function of
packing fraction in Fig. 5. The position of the maximum shows a
clear signature of the transition in d = 2–5. However, the position
of the minimum for d = 3–5 does not show a clear signature of
this transition. We find that the correlation functions plotted
in Fig. 5 only depend on interparticle distance, with no angular
dependence when oriented to the long axes of each given particle.
This correlation function is unusual in that the jamming transi-
tion is marked by the disappearance of the nearest neighbor
correlation, seen in the value of the correlation function at the
shortest possible interparticle distance.

5 Conclusion

We have observed a clear signature of the jamming transition
in each of the studied measures of the Voronoi cell as well as
in our newly defined axis-correlation function. These results
bolsters the claim that while jamming is a mechanical transi-
tion, it can be viewed separately as a purely geometric phenom-
enon via the Voronoi cells. These results justify the use of the
Voronoi cell as a tool to understand the jamming transition.
Ultimately, each of the measures are sensitive to the fluctua-
tions in the size and shape of individual Voronoi cells. Each
measure reflects a different change in the cell. The fact that

we see power-law scaling in all of these measurements, even
in 2d bidisperse systems (albeit with different exponents),
suggests that nearly every aspect of the cell changes and is
controlled by the transition from unjammed to jammed. Our
results demonstrate that the mechanical jamming transition
coincides perfectly with a transition in the geometry of the
packing at fJ.
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