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Abstract. There are deep, but hidden, geometric structures within jammed 
systems, associated with hidden symmetries. These can be revealed by repeated 
transformations under which these structures lead to fixed points. These 
geometric structures can be found in the Voronoi tesselation of space defined 
by the packing. In this paper we examine two iterative processes: maximum 
inscribed sphere (MIS) inversion and a real-space coarsening scheme. Under 
repeated iterations of the MIS inversion process we find invariant systems 
in which every particle is equal to the maximum inscribed sphere within its 
Voronoi cell. Using a real-space coarsening scheme we reveal behavior in 
geometric order parameters which is length-scale invariant.
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1. Background

The jamming of athermal spheres has been called the epitome of disorder [1], but this 
doesn’t mean that it is devoid of all symmetries. The structure found within jammed 
systems distinguishes them from Poisson point processes, for which there is no structure 
or correlation. This structure is reflected in the non-trivial behavior of correlations (such 
as the pair-correlation function) [2, 3], geometry [4, 5], contact number distributions 
[6], hyperuniformity [7, 8], and volume distributions [9, 10]. Recent theoretical work 
has demonstrated the existence, and breaking of an abstract replica symmetry at the 
jamming and glass transitions, namely liquid systems have replica symmetry and glasses 
or jammed systems break that symmetry [11, 12]. In this work we search for evidence 
of hidden symmetries in the spatial and geometric structure of systems below, at, and 
above jamming. We employ the general scheme of repeated transformations in the hope 
that they will lead to fixed point systems reflective of the underlying symmetries.

We have previously shown that a number of geometric properties of the Voronoi 
tesselation carry signatures of the jamming transition, including the number of neigh-
bors, surface area, volume, aspect ratio, and maximum inscribed spheres (MIS). There 
is an obvious symmetry that jumps out precisely at the jamming transition. Because 
each particle in a jammed system is in contact with several of its neighbors it must 
kiss the boundaries of its Voronoi cell. Therefore, the maximum inscribed sphere of a 
Voronoi cell must be equal to the particle. This suggests a transformation of repeatedly 
replacing every particle with the maximum inscribed sphere of it’s Voronoi cell. Under 
such a transformation, jamming will necessarily be a fixed point.
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The renormalization group has been very successful in understanding phase 
transitions. At present, jamming lacks an appropriate field with which To con-
struct a renormalized field theory. Nevertheless, we barrel ahead with a brute force 
real space coarsening and rescaling scheme in the hopes of pointing the way to the 
appropriate field theory. By repeated iteration of this coarsening we test a range of 
geometric order parameters to see if they mimic the behavior of a proper renormal-
ized field.

2. Methods

2.1. Packing simulations

In order to generate the initial packings for our MIS Inversion and coarse graining, 
we use an infinite temperature quench protocol [13] as described in reference [4]. 
The process begins with uniformly randomly distributed athermal fricitonless particles 
with monodisperse or polydisperse radii chosen to achieve a desired packing fraction. 
The packing fractions for monodisperse packings are chosen within the range φ = 0 to 
φ φ= 2 J (where φJ is the packing fraction at jamming) to obtain the full spectrum of 
behavior, both well below and well above jamming. Polydisperse packings are gener-
ated with densities from φ = 0 to significantly above φJ but not all the way to φ2 J. We 
choose a harmonic contact potential between particles and then allow the system to 
relax to its local potential energy minimum (also called its inherent structure) via the 
conjugate gradient algorithm [14] for systems below φJ or the fast inertial relaxation 
engine (FIRE) algorithm [15] for systems above φJ. For studies of the MIS Inversion we 
use monodisperse packings of 8192 particles and polydisperse packings of 163 84 par-
ticles. Coarse graining requires higher numbers of particles, and so we use monodisperse 
systems that contain 65536 particles. All data is monodisperse unless otherwise stated.

For polydisperse packings, we choose radii from a log-normal distribution. We char-
acterize a polydisperse packing by the standard deviation of the radii divided by the 
mean. For the MIS inversion, we report on initial polydispersities of 0, 0.05, 0.1, 0.15, 
and 0.2.

2.2. Geometric cell properties

The maximum inscribed sphere (MIS) of a Voronoi cell is the largest sphere that is fully 
contained within the boundaries of the cell. It is calculated using linear programming 
techniques [16].

Detailed descriptions of how we calculate the number of neighbors, the surface area, 
the volume, and the aspect ratio can be found in our previous work [4, 5]. Two particles 
are considered neighbors if their Voronoi cells share a facet, so to find the number of 
neighbors, we calculate the number of facets via a method developed by Boissonnat 
[17]. To find the surface area and the volume, we calculate the veritices of each cell and 
take a delaunay triangulation to split each facet into simplicies. From these simplices 
and an interior point of the cell, it is simple to calculate the surface area and volume 
associated with each cell.

http://dx.doi.org/10.1088/1742-5468/2016/07/074009
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The aspect ratio that we use for convex cells is defined by the maximum distance 
between any pair of vertices contained in a cell divided by the minimum of the maxi-
mum distance between each vertex and every facet. Thus, the aspect ratio can be seen 
as the ratio between the longest and shortest spanning lengths of a cell.

2.3. Maximum inscribed sphere inversion

The MIS inversion process starts with a sphere packing at any density. From this pack-
ing we calculate the radical Voronoi tesselation (also sometimes called the Laguerre 
tesselation). We choose to use the radical Voronoi tesselation as opposed to the addi-
tively-weighted Voronoi tesselation (or indeed any other tesselation) to ensure that the 
Voronoi cells are always convex regardless of polydispersity [18]. From this tesselation 
we calculate the MIS for each cell. Finally, this new set of spheres is treated as a new 
sphere packing upon which we can iterate this procedure as shown in figure 1. We note 
that each MIS is in general uniquely determined, with the exception of the pathologi-
cal case in which there is a high degree of symmetry in the underlying Voronoi cell (for 
example, if the cell is a rectangular solid). This pathological case will not happen in a 
disordered system, and so we do not explicitly account for it. However, even if such 
cases were present they would simply manifest as a degenerate set of spheres, of which 
our analysis would choose one.

We find that for all systems this process converges to a fixed point packing, depen-
dent on the initial input. In practice, we find that repeating this process 30 times is 
sucient to find fixed points in which each particle deviates by less than one part in 
106 from it’s former position, as shown in figure 2(a).

Even though the MIS inversion constructs packings that are guaranteed to have 
no overlaps we can still define a coordination number Z for each particle by choosing 
an appropriate cuto distance. We pick this distance to fall immediately after the first 
peak in the pair-correlation function.

2.4. Real-space coarsening

Given a sphere packing at any density, we compute the Voronoi tesselation and the 
geometric cell properties, defined above. Because the systems under study here are 

Figure 1. Diagram showing the maximum inscribed sphere (MIS) inversion. (a) 
An initial monodisperse packing is shown with particles colored gray, their radical 
Voronoi cells in black, and the MIS shown as a dashed blue line. (b) The first step 
of the MIS inversion with the same color scheme. Note that the MIS from (a) is 
the new particle, the Voronoi cell has changed, and the system is now polydisperse.

http://dx.doi.org/10.1088/1742-5468/2016/07/074009
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degenerate. Our real space coarsening scheme creates a coarser grained packing by 
joining pairs of neighboring cells. To do so, we choose a random ordering of cells and 
sequentially pair each cell in our list with the the unpaired neighboring cell that shares 
the largest interfacial surface area. Both cells are then removed from the list, and the 
process continues until nearly all cells are paired. Because of the random nature of this 
process there will always be a few singleton cells remaining which we join with the 
previously paired cell with which it shares the highest interfacial surface area (with the 
caveat that no composite cell can be made up of more than three cells). These triplet 
cells constitute less than 3.5% of the total cells in d  =  3, 1.7% in d  =  4, and 0.7% in 
d  =  5. The set of paired cells covers all space and thus produces a new tesselation. Note 
that this new tesselation is not a Voronoi tesselation and is not even convex. However, 
our pairing scheme is designed to create cells that are compact and nearly convex upon 
high iterations. We continue this process iteratively to create a further new tesselation 

Figure 2. Convergence of the MIS inversion. (a) Log-linear plot of the mean 
displacement per particle from the previous MIS iteration. Each line represents 
a system at a dierent initial packing fraction, with color scale indicating initial 
packing fraction as shown beneath the plots. The lower dashed line is drawn at 
φJ and the upper dashed line is drawn at φ∗, the lowest packing fraction for which 
initial packings are fixed points under the MIS inversion. (b) Packing fraction 
at each step of the MIS inversion, using the same color scheme as a. The upper 
dashed line is drawn here at φJ and the lower dashed line is at φ∗, which is flipped 
from a.
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with approximately half as many cells as the previous one as shown in figure 3. Thus 
the number of iterations possible in this scheme is limited by the number of particles 
in the initial packing. In d  =  3, we average this process over 100 dierent orderings. In 
d  =  4, we use one ordering due to the increased computation time.

If we label two neighboring cells A and B we can call the combined cell ∪A B. 
The neighbors of ∪A B are the union of the set of neighbors of A and B (not count-
ing each other), the volume is simply the sum of the constituent volumes, and the 
surface area is the sum of the constituent surface areas minus twice the interfacial 
surface area. Because the new cells are not convex and our aspect ratio only applies 
to convex cells, we take the convex hull of the vertices of all the constituent cells 
and we calculate the aspect ratio as defined above. This preserves the definition that 
the aspect ratio is the longest one dimensional distance divided by the shortest one 
dimensional distance, but these two distances are no longer constrained to be fully 
contained within the cell.

When a combined cell is made of three constituent cells A, B, and C, this process is 
done for ∪A B and then ( )∪ ∪A B C .

3. Discussion

3.1. Maximum inscribed sphere

Under repeated action of the MIS inversion, we find that every initial packing quickly 
reaches a fixed point depending only on the initial packing fraction and initial polydis-
persity. Figure 4(a) plots the asymptotic polydispersity against the asymptotic packing 
fraction. Each curve shown corresponds to a dierent starting polydispersity, ranging 
from 0 to 0.2, in steps of 0.05, with varied initial packing fraction from φ = 0 to φ φ= 2 J 
represented by the color scale. These fixed points form a continuous line in this phase 
space, demonstrating that packings with similar initial properties to one another trans-
form into fixed point packings with similar asymptotic properties.

The presence of rattlers (particles which are unconstrained, even in a jammed sys-
tem) induces a small drift between the initial packings and fixed point packings, even 
at φJ. If we were to apply this same transformation in higher dimensions where the 
presence of rattlers is greatly diminished [19], we expect that the points would corresp-
ondingly drift even less.

Figure 3. The coarse graining procedure pairs each cell in with the unpaired cell 
that shares the highest surface area. (a) The original Voronoi diagram, (b) the 
system after one step of the coarsening procedure, (c) the system after two steps of 
coarsening. Colors denote the membership in cells after two rounds of coarsening.

http://dx.doi.org/10.1088/1742-5468/2016/07/074009
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By design, jammed packings at φJ are a fixed point under this repeated transfor-
mation. We find that systems extending a significant distance below jamming are also 
fixed points. Surprisingly, this extends down to a density consistent with our previously 
discovered φ∗ [4]. This is the point at which the distribution of MIS radii first becomes 
a delta function. The values used for φ∗ are 0.615 and 0.427 in d  =  3 and d  =  4 respec-
tively. However, we find that the mean coordination number in dimension d jumps 
from d  +  1 to 2d not at φ∗, but at φJ, which simply indicates that the particles in this 
range are not jammed. The fact that systems between φ∗ and φJ are fixed points of this 

Figure 4. Asymptotic properties of the MIS inversion. (a) Fixed points of the MIS 
Inversion are represented by their polydispersity and their final packing fraction. 
Initial packings start at polydispersities of 0 (closed circles), 0.05 (squares), 0.1 
(x’s), 0.15 (open circles), and 0.2 (triangles). Points that remain fixed through the 
entire process lie on the dotted lines associated with their starting polydispersity. 
Initial packing fraction is coded into the color. (b) Asymptotic mean number of 
contacts ⟨ ⟩Z  as a function of initial packing fraction for d  =  3 (black), and d  =  4 
(green).
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transformation points conclusively to a symmetry that exists only within this range: all 
non-rattler particles are exactly equal to the MIS of their Voronoi cells.

Systems that begin well above jamming get folded back to systems below jamming 
under this transformation. This is because the MIS of a Voronoi cell for an overjammed 
particle is always smaller than the particle itself due to the fact that overjammed 
particles are not fully contained within their Voronoi cells [4]. These systems always 
appear to be folded onto the range between φ∗ and φJ.

We observe a cluster of data points near an asymptotic φ = 0.53, with no fixed 
points falling below this density. This packing fraction is strikingly similar to those 
obtained in frictional random loose packing (RLP) experiments and simulations  
[20, 21]. Further, these fixed points all have a mean coordination number of ⟨ ⟩�Z 4 in 
d  =  3 (shown in figure 4(b)), as required for RLP. By design, each MIS particle must have 
a minimum of Z  =  d  +  1 non-cohemispheric contacts, but this only sets a lower bound. 
Thus, these fixed point packings appear to be a frictionless analog of RLP. In this way, 
MIS inversion oers an interesting, non-physical mechanism for generating polydisperse 
RLP packings. It would be interesting to compare the same process in higher dimensions 
to high dimensional simulations of RLP if they were to become available.

3.2. Real-space coarsening

For all of the parameters studied, our systems reach fixed points under appropriate 
rescaling after only a few iterations of the coarsening procedure. However, the shape of 
the curve of fixed points appears to be strongly dependent on the parameters in ques-
tion. Figures 5(a)–(d) shows the iterative application of the coarse graining to a range 
of systems between φ = 0 and φ φ= 2 J in d  =  3 for the mean number of neighbors (a), 
the mean surface area (b), the standard deviation over the mean of the volume (c), and 
the mean aspect ratio (d). Figures 5(e)–(h) shows just the original order parameter and 
the fixed point after 6 iterations of the coarsening for d  =  3 and d  =  4, showing similar 
behavior across dimension.

The mean number of neighbors (figures 5(a) and (e)) retains its shape most closely, 
but is highly susceptible to noise, as each cell can only have an integer number of neigh-
bors. The volume graph (figures 5(c) and (g)) appears to be even more susceptible to 
noise, as the standard deviation over the mean goes to zero upon even modest iterations 
of the process. It is the surface area and the aspect ratio which show the strongest and 
most interesting behavior. The surface area (figures 5(b) and (f)) appears to come into 
the transition linearly at first, but after the transformation, the trend reverses itself and 
quickly reaches a fixed point that is almost a mirror of the original. Interestingly, each 
packing fraction retains perfect memory of where it began before the iterations. The 
same statement about memory could possibly be said for the neighbors if the graphs 
weren’t so susceptible to noise.

The aspect ratio (figures 5(d) and (g)) gives us the strongest signature of the jam-
ming transition under repeated iterations of the coarse graining. We observe that at 
high iterations of the process we get one value of the aspect ratio far below jamming 
and one value above jamming. There is a cross-over region which may be related to 
the pre-jamming phase transition that occurs at φ∗, as the halfway point seems to coin-
cide with the numerical values used for φ∗. By examining this behavior as a function 

http://dx.doi.org/10.1088/1742-5468/2016/07/074009
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of system size in figure 6 we can conclude that this extended cross-over regime is not 
merely the finite size blunting of a step function. Indeed, there is very little change at 
all between systems of 4096 particles and those of 65536.

Figure 5. Under the coarse graining scheme, the behavior of each parameter of the 
cells reaches a curve of fixed points as a function of packing fraction. On the left, 
we have plotted the initial parameter (black) and the first 6 coarse grainings (each 
corresponding to a lighter shade of gray, with the 6th in red) in three dimensions for 
the mean number of neighbors (a), mean surface area (b), standard deviation over 
the mean of volume (c) and aspect ratio (d). In each, we scale by subtracting o and 
dividing by the order parameter at φJ in that iteration, such that the jamming point 
is always at the origin. On the right (e)–(h), we have plotted only the original (closed 
circles) and the 6th iteration (open circles) for d  =  3 (black) and d  =  4 (green).

http://dx.doi.org/10.1088/1742-5468/2016/07/074009
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4. Conclusion

Each of these transforms provide a new perspective towards understanding jammed 
systems. Through the MIS inversion, we have clarified the pre-jamming phase transition 
at φ∗. Systems between φ∗ and φJ are fixed points of the inversion, meaning that they 
exhibit a symmetry wherein the MIS is equal to the particle itself. This symmetry is 
interesting in that it relates the real particles to the Voronoi network, which is a purely 
geometric construct. We posit that the transition at φ∗ can only be seen when observ-
ing an order parameter that is influenced both by the mechanical network of contacts 
as well as the geometric Voronoi cell. Thus, it is perhaps not surprising that this pre-
jamming transition is absent in purely mechanical or purely geometric order parameters. 
It is interesting to note that the value of φ∗ is very close to the value of the ideal glass 
transition in thermal hard spheres [22]. We are actively pursuing this line of research.

The coarse graining reveals a dierent symmetry which could be useful in construct-
ing a renormalizable field theory for jamming. Both the surface area and the aspect ratio 
present interesting features under coarse graining which preserve knowledge of the under-
lying packing while other features are washed out. Somehow, the surface area retains 
perfect memory of the underlying packing. Aspect ratio is particularly intriguing as it 
separates systems into two clearly dierent classes, above and below the jamming trans-
ition. This is reminiscent of the renormalization group’s delineation between relevant and 
irrelevant graphs. If this can be translated into a rigorous renormalization group analysis, 
it would imply that either the surface area, the aspect ratio, or both reveal symmetries 
that fundamentally dierentiate a jammed packing from an unjammed one.
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Figure 6. Coarse grained aspect ratio cross over shows no evidence of finite 
size eects. We have plotted 3 system sizes in d  =  3 at the 6th iteration of the 
coarsening (as done in figure 5(h)), with system sizes of 4096 (red open circles), 
8192 (blue triangles), and 65536 (black closed circles).
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