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In conventional fluids, viscosity depends on temperature ac-
cording to a strict relationship. To change this relationship, one
must change the molecular nature of the fluid. Here, we create a
metafluid whose properties are derived not from the properties of
molecules but rather from chaotic waves excited on the surface of
vertically agitated water. By making direct rheological measure-
ments of the flow properties of our metafluid, we show that it
has independently tunable viscosity and temperature, a quality
that no conventional fluid possesses. We go on to show that the
metafluid obeys the Einstein relation, which relates many-body
response (viscosity) to single-particle dynamics (diffusion) and
is a fundamental result in equilibrium thermal systems. Thus, our
metafluid is wholly consistent with equilibrium thermal physics,
despite being markedly nonequilibrium. Taken together, our re-
sults demonstrate a type of material that retains equilibrium phys-
ics while simultaneously allowing for direct programmatic control
over material properties.
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Materials science seeks not only to understand but also to
control the properties of matter. To do so, one must dy-

namically change the nature of conventional materials at the
molecular scale. Recent work circumvents this problem by
rejecting the molecule as the fundamental unit and substituting a
macroscopic structural element. This approach has successfully
created metamaterials with novel optical (1–3), acoustic (4–6),
mechanical (7–9), and fluid properties (10, 11) that would oth-
erwise be impossible. However, this approach comes at a cost: by
deriving their properties from macroscopic, nonequilibrium, or
anisotropic elements, these materials necessarily abandon the
physics of thermal systems. In this work, using a combination of
active and passive rheology, we show that macroscopic chaotic
surface waves on a vertically agitated fluid form a fully thermal
metafluid with dynamically tunable material properties. In con-
trast to a conventional fluid in which viscosity and temperature
are inextricably linked, we show that these quantities are in-
dependently tunable in our system. We further demonstrate that
by satisfying the barest criteria of isotropy and steady-state chaos
[as required by kinetic theory (12, 13)], we have created a system
that obeys the Einstein relation (14). Thus, despite being mac-
roscopic and nonequilibrium, the system is well described by
equilibrium thermal physics.
The “molecules” of our metafluid are chaotic Faraday waves

(15, 16), generated in a water-filled aluminum dish that is ver-
tically oscillated with rms amplitude As and at frequency fs (Fig. 1
A and C; see Materials and Methods for technical details). The
waves uniformly cover the surface of the water and experience
significant pinning only at the boundary, far from where our
measurements are conducted. The chaos and wave density is ho-
listically steady state, although the existence of a particular wave is
transient. Thus, “collisions” in our system refer to encounters be-
tween a buoyant tracer and the ephemeral excitations of the cha-
otic wave environment. We have previously shown chaotic Faraday

waves to have a well-defined temperature decoupled from the bath
temperature by observing the Brownian motion of a tracer particle
(17). We found this temperature to be proportional to shaker
amplitude.

Results and Discussion
Drag Coefficient. Our rheometer consists of a driving arm that
applies a sinusoidally varying torque τðtÞ at a variable frequency
to a buoyant test rotor via a magnetic interaction (Fig. 1 A–C;
see Materials and Methods for technical details). We derive the
exact form of this torque in Materials and Methods and find that
it is well approximated as a Hookean interaction between the
drive arm and the test rotor with rotational spring constant
kr ≈ 6× 10−5  Nm (Fig. S1). Sample time series for the drive arm
and test rotor positions are given in Fig. 1D.
We program the driving arm’s position β to oscillate sinusoi-

dally as

βðtÞ= β0 sinðωtÞ, [1]

where β0 is the oscillation amplitude and ω is the angular driving
frequency. The resulting motion of the test particle is described
by the differential equation

Iθ
::
= τðtÞ− ζr _θ, [2]

where θ is the angular position of the test particle and I
is the moment of inertia. Treating the rotor as a damped
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driven harmonic oscillator, the solution to this differential
equation is

θðtÞ= θ0 sinðωt+ϕÞ, [3]

where the response frequency ω is identical to the driving fre-
quency ω after a brief period as the rotor relaxes into its steady
oscillation. All datasets are collected after allowing for this tran-
sient period. As derived in Materials and Methods, the driving
amplitude β0, oscillation frequency ω, response amplitude θ0 and
phase lag ϕ are related to the drag coefficient ζr as

ζr =
krβ0
ωθ0

sinϕ. [4]

The rotor’s response θðtÞ is recorded using a contactless mag-
netic encoder, and then the response amplitude and phase lag
are obtained by using a simple lock-in measurement.
In Fig. 2A, we demonstrate that the metafluid behaves as a

Newtonian fluid with a drag coefficient that is independent of
the rheometer drive frequency over an experimentally relevant
range of ω. The above equations also predict (as shown inMaterials
and Methods) a mechanical impedance of

ZmðωÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ζr
I

�2

+
1
ω2

�
kr
I
−ω2

�2
s

. [5]

Fig. 2B demonstrates that the measured impedance agrees with
the expected form.
Fig. 2C shows the results of our active measurement of drag

coefficient at values for shaker amplitude and frequency covering
the phase space of chaotic Faraday waves. We find that the viscous
drag coefficient imparted by the chaotic waves is proportional to

the product Asfs. We can make a heuristic argument to show that
this relationship is reasonable. If we hold the shaker amplitude As
fixed and increase the shaker frequency fs we will decrease the
characteristic wavelength of the surface waves and thus decrease
the characteristic time between collisions of the waves and the
rotor. If we look to the derivation of the Einstein relation, we see
that ζr should be inversely proportional to this characteristic time
(14) and thus find ζr ∝ fs. Likewise, if we hold fs constant and in-
crease As, we will increase the energy in each surface wave, thus
increasing the momentum transfer effected by each collision and
so increasing the drag coefficient.
The onset of chaos limits our measurement range in shaker

amplitude and frequency space, because there exist regions in
this space for which the Faraday waves are not chaotic (or, in-
deed, do not even exist). Nonetheless, we measure the drag co-
efficient on calm water to be ζr = 1.9× 10−5   Js, slightly below
the lowest drag coefficient that we are able to measure with
chaotic waves.

Temperature and Diffusion Constant. To make passive measure-
ments, we remove the driving arm of our rheometer and thus al-
low the test rotor to diffuse freely while tracking its position. From
the position trace, we calculate the mean squared displacement
(MSD) hðΔθÞ2i and extract two quantities: a mean-squared bal-
listic angular velocity hω2

bi and a rotational diffusion constant Dr.
A sample MSD is shown in Fig. 1E. Plotted over our data in Fig.
1E is the prediction by Ornstein (18) and Fürth (19) for the MSD
of a truly Brownian particle. Set into Fig. 1E is the velocity
autocorrelation corresponding to the plotted MSD, shown with
the prediction of the Langevin equation for a thermally diffusing
particle. The agreement of predicted thermal behavior with our
data demonstrates that our system has the same constituent
dynamics as a thermal particle, albeit at much larger length and
time scales.
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Fig. 1. Experimental setup. (A) The rheometer assembly. h is the vertical separation of the drive arm and test rotor. (B) Top-down cartoon illustrating the
coordinates of the system. m1 and m2 are the moments of the drive arm and test rotor magnets, respectively; R is the radius of rotation of the magnets; θ is
the angular position of the test rotor; and γ is the relative angle between the drive arm and test rotor. (C) Photograph of the rheometer. (D) Example (shaker:
fs = 60 Hz, As = 0.064 mm, drive arm: ω=2π = 0.8 Hz) time series of drive arm (red, light) and rotor (blue, dark) positions. (E) Example (shaker: fs = 60 Hz,
As = 0.064 mm) MSD. Our data (points) are shown with the prediction for a truly Brownian particle (line) (18, 19). (E, Inset) Velocity autocorrelation function
corresponding to the plotted MSD, with the prediction of the Langevin equation plotted over the data.
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For sufficiently small lag times Δt, the MSD appears ballistic:
hðΔθÞ2iΔtb = hω2

biΔt2b. At longer times, the MSD appears diffu-
sive: hðΔθÞ2iΔtd = 2DrΔtd. To avoid the biases associated with the
traditional method of fitting the MSD to estimate hω2

bi and Dr,
we instead choose the smallest lag times Δtb and Δtd that are
convincingly ballistic and diffusive (20), respectively, and esti-
mate hω2

bi and Dr using

�
ω2
b

�
=

D
ðΔθÞ2

E
Δtb

− σ2

Δt2b
[6]

and

Dr =

D
ðΔθÞ2

E
Δtd

− 2σ2

2Δtd
, [7]

where σ2 = 3.7× 10−5   rad2 is the positional error associated with
the discrete nature of the magnetic rotary encoder output. Fi-
nally, given the hydrodynamic moment of inertia Ih for the rotor,
equipartition gives us the temperature as T = Ihhω2

bi.
Fig. 2D confirms our previous finding that temperature is

proportional to shaker amplitude As (17). We would expect
the temperature of the system to be proportional to the energy
density in the surface waves, which is itself proportional to the
amplitude squared as T ∝A2

waves. We can understand the linear
dependence of T on the shaker amplitude As by considering
the response properties of Faraday waves. In such systems, the
characteristic response amplitude is generally proportional to the
square root of the driving amplitude (21), so Awaves ∝A1=2

s , which
leads to T ∝As.

The temperatures we measure here from rotational motion
are consistent with the temperature we measured in earlier work
on translational motion (17), giving further credence to the notion
that our system demonstrates energy equipartition and is truly
thermal. The measured temperature is a remarkable 14 orders of
magnitude larger than the water bath temperature, demonstrating
that the thermal behavior of our system is completely divorced
from that of ordinary matter.

Einstein Relation and Hydrodynamic Moment of Inertia. Thermal
fluids satisfy the Einstein relation, which states that Drζr =T. The
power of the Einstein relation is that it connects two very dif-
ferent properties of fluids: rheology (a measurement of corre-
lated many-body behavior) and diffusion (a measurement of
single-particle dynamics). There is no a priori reason to expect
the Einstein relation to hold in a nonequilibrium complex fluid
such as ours in which energy is constantly being injected into the
system. Nonetheless, Fig. 3A demonstrates that the Einstein re-
lation is satisfied. That we discover an intact Einstein relation
further convinces us that our macroscopic metafluid is in fact an
equilibrium fluid. Additionally, Fig. 3B shows that the diffusion
constant calculated from the MSD is consistent with the diffusion

0
0

1

2

3

4

5

D
 r 

ζ 
r 

  (1
0

 -7
 J

)

1 2 3 4
<ω

b
 2> (10 -2 s-2)

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

D
r, Green-Kubo

 (10-3 rad2/s)

D
r,

 M
S

D
 (

1
0

-3
 r

a
d

2
/s

)

A

B

Fig. 3. (A) Demonstration of the Einstein relation in our system. The product
Drζr is proportional to the angular mean square ballistic velocity hω2

bi, which is,
in turn, proportional to the effective temperature of the waves T. The line
shown is a fit to the data of the Einstein relation Drζr = Ihhω2
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constant as calculated using the Green–Kubo relations, which
relate the diffusion constant to the integral of the velocity
autocorrelation function. This consistency convinces us that
Einstein relation in our system may be trusted over all timescales
available to our measurement. Taken together, these results
suggest that the universality of thermal systems should be ex-
tended to systems which satisfy broader criteria of steady-state
chaos and isotropy.
This notion of universality is supported by work done in other

driven, dissipative systems. For example, the work of Ojha et al.
(22) demonstrated that a particle agitated by turbulent airflow is
identically thermal with a temperature completely divorced from
the room temperature. Here, we have used an unconventional
mechanism for thermalization and yet, nevertheless, recover
thermal behavior, also with a temperature completely divorced
from that of the surroundings. Our work further demonstrates
that these macroscopic thermal systems can be tuned in ways that
microscopic systems cannot.
The slope of the fitted line relating hω2

bi and Drζr in Fig. 3A is
the hydrodynamic moment of inertia Ih, as T = Ihhω2

bi. This
quantity is larger than the moment calculated directly from the
mass and geometry of the test rotor by nearly an order of mag-
nitude due to the fact that a volume of water is swept along with
the rotor.
We have thus far shown that T ∝As, ζr ∝Asfs and Drζr =T.

Taken together, these results imply that Dr ∝ 1=fs. We can heuris-
tically understand this relationship by realizing that shaker fre-
quency is inversely related to the characteristic wavelength of the
chaotic surface waves. As shaker frequency decreases, the charac-
teristic wavelength increases. Because the average distance between
wave excitations is greater, the mean free path and mean free time
of a diffusing particle increase proportionally. The diffusion con-
stant is proportional to ðmean  free  pathÞ2=ðmean  free  timeÞ. By this
line of reasoning, Dr should be proportional to 1=fs.
Our results also imply that Dr should not depend strongly on

shaker amplitude As. We can understand this relationship heu-
ristically as well. As the shaker amplitude increases, so too does
the amplitude of the waves, as we outlined in our discussion of
why T ∝As. This increase in amplitude increases the strength of
the kicks that set a particle in motion, but also increase the
strength of the kicks that slow it down. The increase in thermal
energy is offset by the energy dissipated by the drag coefficient,
which also increases with shaker amplitude. Thus, it is reason-
able that Dr not depend strongly on As.

Tunable Thermal Newtonian Metafluid. We have demonstrated
three properties of this metafluid: (i) the metafluid has a

well-defined Newtonian viscous drag which is controlled by the
product of shaker amplitude and frequency; (ii) the metafluid
has a well-defined temperature, which is controlled by shaker
amplitude; and (iii) the metafluid satisfies the Einstein relation.
These results lead to the inevitable conclusion that our system is
in fact a thermal Newtonian metafluid with independently tun-
able material properties, as shown in Fig. 4. Any arbitrary state
or path in Dr − ζr −T space that satisfies the Einstein relation is
translatable using our measured calibration curves into the
fs −As parameter space. An example Dr − ζr −T path is shown in
red in Fig. 4A and then shown translated into a corresponding
fs −As path in Fig. 4B using the Einstein relation and the cali-
bration curves shown in Fig. 2 C and D.
The surface defined by the Einstein relation is shown as the

background gradient in Fig. 4A, with color indicating temperature.
Each trial measurement of our system is able to sit anywhere along
this surface, as shown by the plotted points in Fig. 4A. The color of
the plotted points indicates the measured temperature for that
trial, and we see, as in Fig. 3A, that our system agrees with the
Einstein relation.
Conventional fluids, by contrast, lack the freedom to move

arbitrarily about this surface, because they suffer from the ad-
ditional constraint that viscous drag is a function of tempera-
ture. For example, viscous drag in an ideal gas is related to
temperature as ζ∝T1=2 (and thus ζ∝Dr), as shown in the rep-
resentative ideal gas model curve in Fig. 4A (dashed line). To
change the constant of proportionality, one would need to
change the molecular composition of the gas or, put more
plainly, one would need to change the very identity of the gas.
A conventional fluid is therefore confined to a single curve
through Dr − ζr −T space.
In this paper, we have presented a fully tunable, thermal

Newtonian metafluid. By combining passive and active rheol-
ogy, we directly measure diffusion, temperature, and viscous
drag in a system of chaotic surface waves and show that they
are independently manipulable. The Einstein relation is satis-
fied even though our system is both macroscopic and non-
equilibrium, hinting that a broader universality exists in random
systems: so long as steady-state, isotropic chaos exists, the sys-
tem may be mapped onto an equilibrium statistical mechanical
system. This reading of the data is supported by previous stud-
ies of thermal behavior in driven, dissipative systems with in-
herent randomness (22).
We have followed in the footsteps of previous metamaterial

research (1–11), creating and characterizing an unconventional
material by rejecting the atom as the fundamental thermal unit
and substituting a macroscopic element, in our case, with chaotic
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surface waves. Our system provides a platform in which experi-
ments may be performed, where the tools of thermodynamics
remain intact and the fluid properties can be controlled in real
time. There are obvious limitations, for example, the metafluid
cannot flow through a pipe; it cannot be compressed, nor is
there an easy way to define pressure; and it is confined to two
dimensions. However, we have already shown it to be useful in
observing the atomistic dynamics of 2D polymer analogs (23),
and we believe that it will prove elucidating in many open
questions of the thermal world, such as self-assembly and 2D
pattern formation (24–26). Perhaps, emergent metafluids such
as ours exist throughout the macroscopic world, be they swarms,
turbulent weather, financial markets, or any other system with
intrinsic randomness.

Materials and Methods
Shaker Assembly. The waves are generated in a water-filled aluminum dish
(diameter, 17.5 inches; depth, 0.5 inches) that is vertically oscillated with rms
amplitude As and at frequency fs (Fig. 1A). The dish is mounted on a ceramic-
coated aluminum shaft (diameter, 2 inches), which passes through a 2-inch
inner diameter air bushing (New Way Air Bearings). This assembly is leveled
by a stage mounted to the outside of the bushing mounting block. The
ceramic-coated shaft is connected by a 24-inch length of 1-inch T-slot
framing to an electromechanical shaker (VTS-100; Vibration Test Systems)
controlled by a digital function generator (Model DS335; Stanford Research
Systems) through a voltage amplifier (Europower EP4000; Behringer). Four
springs connect the T-slot framing shaft to the external armature, bearing
nearly all of the static load. An accelerometer is mounted to the bottom of
the dish to measure stroke amplitude and frequency through a digital os-
cilloscope (TDS 2012C; Tektronix).

Rheometer. The driving arm of the rheometer is laser-cut from acrylic and has
attached to it two neodymium magnets (cylinder magnets; thickness, 0.125
inches; diameter, 0.5 inches; moment m1 = 0.42 A m2; K&J Magnetics). Each
magnet is positioned R= 3  cm from the center of the arm with their north
poles up. The driving arm sits at the end of a long aluminum shaft and is
rotated about its center by a stepper motor driven by an Arduino Uno. The
long shaft ensures that there is no effect due to magnetic interactions with
the stepper motor. The test rotor consists of two closed-cell nylon foam disk
floats held at the same R= 3  cm from the center as the driving arm magnets
by a laser-cut piece of balsa wood. The wood piece has a hole in its center
which, when slipped over a Delrin post set into the center of the dish, holds
the test rotor coaxial with the driving arm but free to rotate. In the center
of each float disk is a neodymium magnet (cylinder magnets; thickness,
0.0625 inches; diameter, 0.25 inches; moment m2 = 0.053 A m2; K&J Mag-
netics) with its north pole up. The vertical separation between the driving
arm and the test rotor is h= 6  cm. A contactless magnetic encoder (part no.
AEAT-6600-T16; Avago Technologies) is used to track the angular position
of the test particle. To facilitate tracking, a cylindrical, diametric (polari-
zation orthogonal to the axis of symmetry) magnet with an axial pass-
through hole is mounted in the center of the wooden connector. The
magnetic encoder is mounted on top of the center post and is recorded by a
second Arduino Uno.

Derivation of Torque Due to Magnets. Here, we derive, in exact form, the
torque on the test rotor as a function of relative angle γ.

We begin by defining all salient parameters and variables. Fig. 1 A and B
illustrates the relationship between the quantities. θ is the angular position
of the test rotor; γ is the relative angle between the drive arm and test rotor
when viewed from above; R is the distance of the magnets from the axis of
rotation; ~m1 =m1 ẑ and ~m2 =m2ẑ are the magnetic moments of the upper
and lower magnets, respectively; ~r is the separation of the upper magnet
from the lower magnet; a is the lateral distance between the upper and
lower magnets (defining the x̂ direction); and h is the vertical distance be-
tween the upper and lower magnets.

The coordinates and dimensions of the system are related to one
another as

r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 + a2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 + 4R2 sin2

�γ
2

�r
. [8]

Given that ~m1 =m1ẑ, ~m2 =m2 ẑ and~r · ẑ=h, the force between the upper and
lower magnets is

~F
�
~r, ~m1, ~m2

�
=
3μom1m2

4πr5

�
2hẑ+

�
1−

5h2

r2

�
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�
. [9]

The exerted in-plane torque is driven by the component of the force that is
directed tangent to the arc of rotation. To obtain this force, we first find the
x̂ component of~F, which lies along a. Noting that~r · x̂ = a, we can write the x̂
component of ~F as

Fx =~F · x̂ =
3μom1m2R

2πr5

 
1−

5h2

r2

!
sin
�γ
2

�
. [10]

We calculate the component of the force tangent to the arc of rotation
Fγ = Fx cos

	
1
2 γ


and thus the torque τ= FγR using the identity sin

	
1
2 γ


cos
	
1
2 γ


=

1
2 sin γ to obtain

τðγÞ= 3μom1m2R2

2π

 
1
r5

−
5h2

r7

!
sin  γ. [11]

This equation is the exact form for the torque on the test particle as a
function of relative angle γ, with an extra factor of 2 to account for the fact
that our system has two pairs of magnets. For simplicity, we would like to
approximate this torque as Hookean. To obtain a Hookean form, we make
the approximation that r ≈h and sin γ ≈ γ, which is a small-angle approxi-
mation and will break down as γ increases. The Hookean torque we obtain is

τðγÞ=−krγ, [12]

where

kr =
6μom1m2R2

πh5 . [13]

For the particular parameters of our system, kr ≈ 6×10−5  Nm. Fig. S1 shows
the torque in exact form and the linear approximation over a range of
relevant angles.

Measurement of Drag Coefficient. We program the driving arm’s position β to
oscillate sinusoidally as

βðtÞ= β0 sinðωtÞ, [14]

where β0 is the oscillation amplitude and ω is the angular driving frequency.
Assuming a well-defined coefficient of drag, the resulting motion of the test
particle is described by the differential equation

Iθ
::
= τðtÞ− ζr _θ, [15]

where θ is the angular position of the test particle, I is the moment of inertia,
τðtÞ is the torque applied by the driving arm, and ζr is the rotational drag
coefficient. The applied torque τ is only dependent on the relative angle
γðtÞ= θðtÞ− βðtÞ between the driving arm and the test particle and so can be
parameterized as τðtÞ= τðγðtÞÞ. We derive the exact form of this torque
above and find that it is well approximated by a Hookean spring:

τðγÞ=−krγ, [16]

with spring constant

kr =
6μ0m1m2R2

πh5 ≈ 6× 10−5  Nm. [17]

Here, m1 and m2 are the magnitudes of the magnetic moments of the
driving arm and test particle magnets, respectively. This approximation al-
lows us to solve Eq. 15 exactly as a damped driven harmonic oscillator to find

θðtÞ= θ0 sinðωt+ϕÞ, [18]

where

θ0 = β0
kr

IωZmðωÞ, [19]

the mechanical impedance is

ZmðωÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ζr
I

�2

+
1
ω2

�
kr
I
−ω2

�2
s

, [20]

and the phase lag is

Welch et al. PNAS | September 27, 2016 | vol. 113 | no. 39 | 10811

PH
YS

IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1606461113/-/DCSupplemental/pnas.201606461SI.pdf?targetid=nameddest=SF1


ϕðωÞ= tan−1

 
ζr
I

ω

ω2 − kr
I

!
. [21]

We solve for the drag coefficient to find

ζr =
krβ0
ωθ0

sinϕ. [22]

Thus, we are able to calculate the drag coefficient by measuring the am-
plitude and phase lag of the test rotor’s response relative to the driving
signal. We obtain the response amplitude and phase lag using a simple lock-
in measurement:

θ0 =
�
ÆθðtÞcosðωtÞæ2 + ÆθðtÞsinðωtÞæ2

�1=2
, [23]

ϕ= tan−1
�
ÆθðtÞsinðωtÞæ
ÆθðtÞcosðωtÞæ

�
, [24]

where the angle brackets indicate time averages.
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Fig. S1. Comparison of Hookean approximation and full form for torque exerted by drive arm. The full form torque (blue) is well approximated by a Hookean
torque with spring constant kr ∼ 6 × 10−5 Nm (red) over a range of angles relevant to our active measurement of drag coefficient.
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