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A thermal colloid suspended in a liquid will transition from a short-time ballistic motion to a long-time
diffusive motion. However, the transition between ballistic and diffusive motion is highly dependent on the
properties and structure of the particular liquid. We directly observe a free floating tracer particle’s ballistic
motion and its transition to the long-time regime in both a Newtonian fluid and a viscoelastic Maxwell fluid.
We examine the motion of the free particle in a Newtonian fluid and demonstrate a high degree of agreement
with the accepted Clercx–Schram model for motion in a dense fluid. Measurements of the functional form of
the ballistic-to-diffusive transition provide direct measurements of the temperature, viscosity, and tracer radius.
We likewise measure the motion in a viscoelastic Maxwell fluid and find a significant disagreement between the
theoretical asymptotic behavior and our measured values of the microscopic properties of the fluid. We observe
a greatly increased effective mass for a freely moving particle and a decreased plateau modulus.
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I. INTRODUCTION

At very short time and length scales the diffusive motion of
a Brownian particle breaks down into a series of individual bal-
listic flights. The functional form of this transition is controlled
by the microscopic structure and behavior of the fluid. The
microscopic time and length scales for the ballistic motion are
so small that direct measurements have only recently become
possible [1–4]. These experiments have used optical traps
to confine a test particle within a harmonic well, allowing
a high-precision measurement of the short-time motion but
at the cost of a loss of information about the crossover to
longer-time behavior that is indicative of the microscopic
structure of the fluid. Furthermore, laser traps by their nature
create a harmonic potential-energy well for the motion of the
particle and thus function similarly to an elastic term in a
viscoelastic fluid. As such, it can be difficult to deconvolve
the effect of the trap from the effects of the elastic component
of the fluid. Indeed, all studies of viscoelastic fluids known to
the authors do not address the ballistic regime. Here we avoid
the limitations and contaminations caused by the use of a laser
trap and present direct measurements of the full transition away
from ballistic motion for a freely moving colloid suspended
in simple Newtonian and viscoelastic Maxwell fluids. These
measurements are achieved in an interaction-free manner
by using a high-speed camera, intense illumination, and an
accurate tracking algorithm [5]. These measurements allows
us to unambiguously distinguish between microscopic models
for dense fluid thermal motion [6–15] and provide a heretofore
impossible glimpse into the fundamental behavior of thermal
fluids. In a simple Newtonian fluid, our measurement is in
close correspondence with analytic predictions. By fitting
our data we can directly measure the constants of motion
as well as a first principles measurement of the temperature
of the fluid. Having proven the validity of this method, we
experimentally examine the motion of a single particle in
a Maxwell fluid as it transitions from ballistic to elastically
trapped to diffusive motion, the first observation of this kind.
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We compare these results to existing microscopic models for
Maxwell fluids [12,15–17] and find significant discrepancies
between the model predictions and the observed behavior.

An early effort to model the ballistic diffusive transition was
performed with the ideal gas approximation [6,7] given by

〈x2〉 = 2kBT
m

γ 2

(
tγ

m
− 1 + e−tγ /m

)
. (1)

Here γ is the Stokes value (6πrη), kB is the Boltzmann
constant, T is the temperature, η is the viscosity, r is the
tracer radius, and m is the mass of the colloid. A more
accurate model for dense fluids, motivated by early computer
simulations [18,19], was achieved by adding an effective
mass term and a memory term to the ideal gas model [8,10].
The effective mass term models the frictionally bound fluid
that is attached to the particle and the memory term models
the inertial interaction of the particle with nearby moving
fluid [20]. At sufficiently short timescales and close to the
speed of sound in the fluid this model breaks down and is
replaced with the simple ideal gas model. The memory term
in the dense fluid model comes from the entrained fluid in a
dense system which slows the change of direction.

These modifications to the Langevin equation were ana-
lytically solved [11] under the assumptions that the fluid is
viscous and incompressible, the Reynolds number is low, and
the test particle is a hard sphere [9,21]. The predicted MSD is
given by
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For simplicity’s sake we define constants z, a, and b as

z = 6πr2√ρη, (3a)

a = (z +
√

z2 − 4γM)2M, (3b)

b = (z −
√

z2 − 4γM)2M, (3c)
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where M is the effective mass which is m + 1
2mf , where mf =

4
3πr3ρ is the the mass of the fluid displaced by the colloid,
and ρ is the density of the fluid. A sample MSD is plotted in
Fig. 2. The dense fluid model and the ideal gas model both
share similar asymptotic forms. At short times, known as the
ballistic regime, the MSD asymptotes to (2kBT /M)t2. At long
times (the diffusive regime), the MSD scales as (4kBT /γ )t .
The dense fluid MSD differs from the ideal gas MSD in two
salient ways: (1) It gives rise to a slower ballistic velocity,
caused by the increased effective mass of the particle. (2) It
has a much gentler crossover between ballistic and diffusive
motion, caused by the inertial memory of the liquid.

Non-Newtonian fluids, however, have much more com-
plicated Langevin equations [12,15] which have not been
explored as intensely due to the lack of experimental data
at the shortest length and timescales. One of the simplest non-
Newtonian fluids is a Maxwell fluid, characterized by a single
terminal relaxation time between spring-like and viscous-like
behavior. This requires the addition of a decaying spring term
to the Langevin equation. This additional term results in an
intermediate plateau regime in the MSD corresponding to the
behavior of a thermal spring. While analytical solutions for the
Maxwell fluid are lacking, predictions have been made about
the asymptotic behavior in the three regimes: ballistic motion,
elastically trapped motion, and finally diffusive motion. The
short-time ballistic behavior is predicted to asymptote to
(2kBT /m)t2, the elastic trap should have a constant MSD of
2kBT /πrG0, and the long-time diffusive motion is predicted
to have an asymptote of (4kBT /γ )t [12]. Here G0 is the plateau
modulus, a commonly measured rheological value which
measures the amplitude of the storage and loss moduli [22].
We use our technique to test the rheological predictions when
applied to a single unconstrained particle in such a fluid moving
between ballistic and diffusive regimes.

II. METHODS

In this experiment, we used polystyrene hard spheres with
a radius of 21.8 μm as our tracer particle. Polystyrene was
chosen because it is easily density matched to water using
NaCl with only minimal, and known, changes to the viscosity.
The size of the particle, larger than those in optical trap experi-
ments, was chosen because the tracking precision as well as the
ideal gas transition time and length increase with increasing
radius. We chose to use water as our experimental liquid
because of its ubiquity in experiments and its relatively low
viscosity. For our setup, the Reynolds number is 2.4 × 10−9.
This system fulfills all of the underlying assumptions required
by the dense fluid equation. When selecting a Maxwell fluid we
chose to use a solution of cetyltrimethylammonium chloride
(CTAC) mixed with water. This mixture has been found
to exhibit a Maxwell fluid behavior caused by worm-like
micelles [13,23] and is a commonly studied Maxwell fluid.
The micelles formed produce a network within the fluid.
This network, acting together, changes the properties of the
supporting fluid. Because the test particle we use is larger than
the micelles it will probe the properties of the complex fluid
rather than solely those of the intervening fluid.

Test particles were placed into a deionized water mixture
at 5 × 10−3% w/v of colloid. The colloids are slightly denser
than water, so NaCl was added to density match the system
at a measured value of 1.06 × 103 kg/m3. After sonicating
and degassing the colloid-water solution, it was placed in a
Fastwell silicon spacer cavity between a slide and a cover slip.
The chamber was sealed with vacuum grease to ensure that air
bubbles did not form. The silicon spacer had a width of 2.4 mm
and circular void with a radius of 5 mm allowing the colloids to
be imaged far from wall effects. The slides were cleaned with
piranha solution and dried with nitrogen gas, which removed
any coatings on the slides.

We created a Maxwell fluid by using a solution of CTAC
at 1% by weight with water with the addition of 0.12 M
of NaSal to facilitate the formation of micelles. We directly
measured the plateau modulus of this solution to be 5.72 Pa by
using an angular frequency sweep from 62 to 0.062 rad/s
at a constant displacement of 0.18 mrad (TA Instruments
AR-2000ex rheometer, with a 60 mm 1.025◦ cone plate).
Our fluid had a density of 1.055 × 103 kg/m3, slightly lower
than the average density of the beads. However, the density
is close enough that beads did not fall out of suspension until
well after all the measurements were complete. The same test
particles were added at a concentration of 2.5 × 10−3% w/v.
When preparing samples, we used a process almost identical
to the one for water. The major difference was that the sample
was not sonicated ahead of being added to the Fastwell
because the fluid solidified when exposed to high-frequency
agitation. Instead, the sample was slowly mixed by using a
low-frequency mixer.

All data were collected on a Nikon TE2000s microscope
on a floating stage optical table in a climate controlled room.
Illumination was provided by a 500 mW red LED (Thorlabs
LED635L) shining through the microscope condenser. In
between the LED and sample a neutral density filter on a
swivel mount was added to allow the initial setup to be done
without excessive local heating of the sample. The sample
was encased in a small cardboard box for isolation from
acoustic vibrations. Images were gathered through a 50×
lens (Nikon LU plan ELWD 50×/0.55 B inf/0 WD 10.1)
by using a Phantom M310 high-speed camera. Videos were
taken at 40 000 fps (T = 25 μs) with an image size of
192 × 192 pixels and a magnification of 0.4 μm/pix. When
filming a particle all motorized elements on the microscope
and camera were turned off to eliminate small vibrations. Once
a particle was found, filming lasted 2.84 s (113 600 frames)
after which the LED was immediately shut off and the ND filter
replaced.

We used a radial center tracking algorithm [5] to find the
center of the colloids in progressive frames of the video.
By using a combination of simulations and tracking test
particles which were stuck to the slide, we found that the
algorithm did not exhibit a preferred direction. We found that
the mean position error was about 1.5 nm in each frame. A
representative trace with the first video frame is shown in
Fig. 1.

Because of the very large number of frames, the precision
of the individual measurement is only a significant source of
error for small measurements. In addition to the measurement
error, the finite nature of our sample size introduces additional
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10 μm

0.4 μm

FIG. 1. A single colloid suspended in water viewed through the
microscope. The path the particle travels for the next two seconds is
shown in blue.

errors for long times. The total error is at each lag time τ is
calculated as

σV (τ ) =
√

8σ 2
pVar(τ )

N (τ )
+ 16σ 4

p

N (τ )
+ Var(τ )2

Nind(τ )
, (4)

where σV is the standard deviation (STD) of the variance, σp is
the STD of the position, N is the total number displacements
measured given by (� − τ )f with � being the total time and
f the frequency, and Nind is the number of independent steps,
(� − τ )/τ .

III. RESULTS

We calculate the mean squared displacement (MSD) from
our measured data as MSD(τ ) = 〈‖�x(t + τ ) − �x(t)‖2〉 where
�x(t) is the measured position of the particle at time t , τ is the
lag-time between position measurements, and angle brackets
denote a time average. The MSD for a representative particle
is plotted as green squares in Fig. 2. This MSD exhibits a small
drift at long times, past about 0.1 s, and a noise floor at very
short times. The drift is likely the result of convective flows
within our sample chamber, driven, perhaps, by local heating
of the sample. However, this drift can be easily removed by
calculating the variance of particle position as a function of lag
time as Var(τ ) = MSD(τ ) − ‖〈�x(t + τ ) − �x(t)〉2‖. The noise
floor is caused by photon shot noise in our camera contributing
to uncertainty in the localization of a particle. We can directly
measure this noise by tracking a particle fixed to a slide and find
it to be independent and identically distributed Gaussian noise
with a variance of approximately 2 × 10−18 m2 (inset to Fig. 2).
The precise value of this noise variance changes from run to
run due to variations in particle size and particle focus (due to
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FIG. 2. The variance of the colloid’s trace, shown in Fig. 1. The
green squares show the mean squared displacement. The black dots
with the error bars show the variance with the noise floor subtracted,
in this case 2.34 × 10−18 m2. In red is the fitted Clercx–Schram
theoretical prediction for the MSD. The best fit value for temperature
is 302 K, and for radius is 21 μm. We propagate the localization
error of the position measurement as well as sampling error through
our calculation to obtain error bars for the plot. The inset shows a
histogram of measured positions for a stranded particle.

changes in z position). Because this noise is independent and
identically distributed for a given measurement we can simply
subtract the noise floor from our measurement to find the true
variance of our particle, plotted as black circles in Fig. 2.

The plotted variance clearly shows a ballistic regime below
about 10−3 to 10−4 s, a crossover regime up until about 10−2

s, and a diffusive regime for longer times. The measured
variance fits the dense fluid model exceedingly well over the
entire range of measured lag times, as shown in Fig. 2. The
model depends on four physical parameters: (1) temperature,
(2) particle radius, (3) fluid density, and (4) fluid viscosity.
Of these, we independently measure the fluid density prior
to observation. The fluid viscosity of salt water is a known
function of density and the temperature [24]. Therefore, we
have only two independent fitting parameters: temperature and
particle radius. To this, we add a third fitting parameter to
describe the magnitude of the noise floor.

We independently fit 18 measurements by using 18 different
particles, shown in Fig. 3. On average, the particle radius
was found to be 20.5 ± 0.8 μm, within the tolerance of
the manufacturer’s quoted radius. The average temperature
measured by our fitting was found to be slightly higher (297 ±
4.5 K) than the measured room temperature (293 ± 2 K), likely
the result of local heating from the intense illumination. The
noise floors for the measurement were found to range from
1.2 × 10−18 m2 to 2.4 × 10−18 m2. Thus fit, the dense fluid
functional form is indistinguishable from the data over much
of our measured range. To characterize the agreement, we plot
the residual percentages and find them to be unbiased and with
an error less than 5% over at least two decades of lag time,
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FIG. 3. Top: The noise floor adjusted variance for 18 different
videos. Inset: The fitted temperature, test particle radius, and noise
floor for the different trials. The black line shows the mean values with
a gray standard deviation. Bottom: Residual percentages showing by
what percent the measurement deviates from the individual fits for
each of the corresponding variances shown above.

as shown in Fig. 3. At longer times, where drift and sampling
errors increase, the percent error increases as well.

We perform similar experiments in a Maxwell fluid created
with a solution of CTAC and water as described above. As in
the case with water, we see a minimum noise floor at short
times and a long time drift in the MSD. The drift in the
measurement is removed by using the variance as described
above and the noise floor is estimated and subtracted, as shown
in Fig. 4, for a representative trial. In total, 30 independent
measurements were made with this Maxwell fluid.

The plotted variance for a Maxwell fluid has two notable
features. (1) At short times the motion is clearly ballistic. The
best fit prefactor for the asymptote is however considerably
lower than that predicted by either the ideal gas or dense fluid
models, corresponding to an effective mass six times larger
than the particles mass or an entrained region with a radius
39.6 μm, compared with the reported radius of 21.8 μm.
This increased effective size of the particle can perhaps be
understood as a result of the fact that the surrounding fluid
contains a network of worm-like micelles. The test particle
impinges upon the network of intertwined micelles and pulls
some of them along, thus increasing the particle’s effective
mass. Alternatively, the surface of the particle may actually
attract the micelles which would increase the effective mass
as well. However, due to the presence of salt in this solution
any interaction between the particle and the micelles must
necessarily be small. (2) The variance shows a clear secondary
plateau which is independent of the noise floor. This plateau
is characteristic of thermally damped motion consistent with
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FIG. 4. The MSD and adjusted variance for a particle moving
in a Maxwell fluid. The black dots show the noise-floor-subtracted
variance. In this figure the noise floor used is 2.2883 × 10−18 m2.
The red lines show the predicted theoretical asymptotes [12] for the
ballistic (solid) and plateau (dashed) regimes. The blue lines show
the observed asymptotes for the ballistic (solid) and plateau (dashed)
regimes. Inset: The Cole–Cole plot for CTAC as measured with a
conventional rheometer. The red curve is a fit to the Maxwell function
demonstrating a measured plateau modulus of 5.72 Pa.

a Maxwell fluid’s predicted behavior at high frequencies.
Examining the best fit asymptotes to the plateau regime, we
find an average plateau modulus over all measurements of
16 ± 2 Pa. This is almost a factor of three larger than the
rheometer measured value of 5.7 Pa.

The Cole–Cole plot (inset to Fig. 4) for this fluid shows it to
be a perfect Maxwell fluid when measured on a conventional
rheometer; however, this deviates from the observed micro-
scopic behavior. These results demonstrate that at the short
time and length scales that our technique probes, the physics
governing this fluid are in fact significantly more complicated
than those of a simple Maxwell fluid model. The displacement
scales probed with our technique are just under four orders of
magnitude smaller than those accessible to a rheometer and
the timescales are two orders of magnitude smaller.

IV. CONCLUSIONS

In this experiment, we resolve the functional form of
the ballistic crossover, revealing the fundamental length and
timescales between individual and collective interactions in
both Newtonian and Maxwell fluids. In so doing we have
created a microscale first-principles thermometer based on the
kinetic theory definition of temperature. We have demonstrated
the validity of this approach by the extremely precise agree-
ment between our results and theoretical models for motion
in dense Newtonian fluids. We have experimentally tested
the accuracy of Maxwell fluid Langevin equation solutions
and found them to be wanting in accurately describing real
materials. Asymptotically, we see a clear need for the addition
of an effective-mass term. More troublingly, the plateau values
as measured with this method are markedly different from

042606-4



DIRECT MEASUREMENT OF THE BALLISTIC MOTION OF . . . PHYSICAL REVIEW E 96, 042606 (2017)

those found with a conventional rheometer. This difference
may be a sign of a shift in behavior between the microscale
addressed by our measurement and the macroscale measure-
ment performed with a rheometer, suggesting that materials
which appear to be a Maxwell fluid at large length scales may
be more complicated at small length scales. Alternatively, this
result could be indicative that the assumptions used in deriving
the asymptotic behavior of the model need to be further
modified. Our technique provides an independent method for
testing models for the microscopic structure of fluids and the
accompanying macroscopic fluid constants. In the future, this
method promises to be useful in measuring multiple transitions
between motion regimes in viscoelastic materials, an area
where laser traps have difficulty because of the effects of

confinement [17]. This method will also enable detailed studies
of the influence of long-range interactions, such as wall
effects, in an interaction free manner [25]. As such, high-speed
single-particle tracking promises to become an important tool
in the study of the fundamental behavior of liquids.
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