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ABSTRACT
One of the most remarkable predictions to emerge out of the exact infinite-dimensional solution of the glass problem is the Gardner transition.
Although this transition was first theoretically proposed a generation ago for certain mean-field spin glass models, its materials relevance was
only realized when a systematic effort to relate glass formation and jamming was undertaken. A number of nontrivial physical signatures
associated with the Gardner transition have since been considered in various areas, from models of structural glasses to constraint satisfaction
problems. This perspective surveys these recent advances and discusses the novel research opportunities that arise from them.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5097175

I. INTRODUCTION

As recently as five years ago, the Gardner transition was but an
exotic feature of abstract models known only by a cabal of statistical
physicists. The recent surge in interest follows from the realization
that mean-field models of structural glasses, which are exact in the
limit of infinite dimension, d → ∞, can also undergo such a tran-
sition. A coordinated effort to better understand the putative mate-
rials properties of this transition in real(istic) physical systems has
since ensued. Because these advances have taken place fairly rapidly
and over a range of subfields, it can be challenging to piece them

together into a forward vision. This perspective aims to contextual-
ize the many theoretical, numerical, and experimental opportunities
that lie ahead. In contrast to a recent review of hard sphere glasses,1
the scope of this perspective is thus both narrower and broader. We
here focus exclusively on Gardner physics but do so for a richer vari-
ety of glass formers and from a broader variety of viewpoints. We
also include an array of recent results that help identify upcoming
research challenges.

To understand what a Gardner transition might look like in a
materials context, we need to recall that a hallmark of solids is their
elastic response to small deformations, i.e., their rigidity. In (perfect)
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FIG. 1. Schematic illustration of the evolution of a glass free energy basin under
an applied perturbation γ, be it mechanical, thermal, or otherwise. At low γ, in
the simple glass phase, the glass responds elastically and its free energy, F, is
quadratic (green arrows). Beyond a Gardner transition γG, the free energy basin
becomes rugged and correspondingly the response becomes intermittent, due to
jumps between sub-basins (red arrows). At even larger deformations, γY, the basin
might disappear or yield (black arrow). Adapted from Y. Jin, P. Urbani, F. Zamponi,
and H. Yoshino, Sci. Adv. 4, eaat6387 (2018). Copyright 2018 Author(s), licensed
under a Creative Commons Attribution 4.0 License.

crystals, rigidity is due to the spontaneous breaking of translational
invariance that follows a first-order phase transition. The resulting
crystalline solid is “thermodynamically” stable. In glasses and other
amorphous solids, by contrast, rigidity emerges from the appearance
of a multitude of long-lived metastable states. These solids also spon-
taneously break translational invariance, but only for a finite—albeit
long—time. Rigidity is then a “dynamical” phenomenon. Once a sys-
tem is confined to a metastable glass state, it responds elastically to
an applied deformation, as would a crystal. Upon crossing the Gard-
ner transition, however, that response changes spectacularly (Fig. 1).
At the Gardner transition and in the Gardner phase that follows, the
materials response becomes strongly nonlinear and is characterized
by intermittent plastic events, all while the system remains globally
solid. The breakdown of solidity happens at larger deformations,
where the metastable glass state disappears entirely.

This perspective elaborates on this point from a variety of out-
looks. Section II revisits the original discovery of the Gardner tran-
sition in spin-glass models and presents its phase space descrip-
tion. Section III recapitulates its rediscovery in hard-sphere mod-
els, and Sec. IV recapitulates the limitations of its applicability in
systems with softer pair interactions. Sections V A and VI extend
Gardner physics to the rheology of amorphous solids and to poly-
disperse crystals, respectively. Renormalization group (RG) consid-
erations of the Gardner criticality are presented in Sec. VII, and
the connection between Gardner physics and constraint satisfac-
tion problems (CSPs) is discussed in Sec. VIII. Section IX briefly
concludes.

II. GARDNER PHYSICS IN SPIN GLASSES
In order to understand how the Gardner transition emerges in

the mean-field description of structural glasses, it is useful to revisit
its original discovery in a class of mean-field spin glasses. We thus
start this perspective with a brief historical and conceptual detour
through these abstract statistical mechanics models.

In 1979, after years of theoretical struggle, the low tempera-
ture mean-field solution of the Sherrington-Kirkpatrick (SK) fully
connected spin glass model3 was identified by Parisi.4 This feat
relied on the invention of the replica symmetry breaking (RSB)
scheme. It took a few years to interpret physically,5,6 and decades to
secure mathematically,7,8 even just parts of the approach. As part of
these efforts, in the 1980s, several statistical physicists turned their
attention to other fully-connected models amenable to the RSB
scheme, such as Derrida’s Random Energy Model (REM), and spin
glasses with p-body,9 Heisenberg,10 or Potts11 interactions. The REM
family of models was especially important in elucidating the mean-
ing of replicas because these models could also be solved fairly
straightforwardly using the Markov inequality.12

The decoding of RSB revealed its intimate relationship to
ergodicity breaking. Spin glass models were then broadly sorted
into two classes, depending on their type of ergodicity breaking and
hence of RSB transition (see Ref. 5 for more details):

● REM-like models, or discontinuous spin glasses, exhibit
a thermodynamic transition of mixed first- and second-
order character. Like at a first-order transition, the rele-
vant (Edwards-Anderson overlap) order parameter jumps
discontinuously and the associated susceptibility does not
diverge, but like at a second-order transition no latent heat
is released. The ergodic components that dominate the
measure at low temperatures are far in phase space from
each other and are absolutely stable; different components
have small Edwards-Anderson overlaps and are separated
by extensive barriers. In the technical replica jargon, these
models require a single step of RSB and are thus called 1RSB
models (Fig. 2).

● SK-like or continuous spin glass models exhibit a thermo-
dynamic second-order spin-glass transition that is accom-
panied with a divergent susceptibility. The whole spin-glass
phase is then marginal, ergodic components (or states)
are critical and close to each other, and barriers between
states are subextensive. Moreover, the organization of these
states is both hierarchical and ultrametric, which corre-
sponds to a maximally rich organization of phase space.
In the replica formalism, marginality is associated with the

FIG. 2. The phase space of a simple glass (REM-like) phase is formed of many
distinct metastable clusters that are internally ergodic (blue regions), as in a per-
fect crystal, but separated by extensive barriers (gray regions). Upon crossing
a Gardner transition, the internal structure of these clusters changes dramat-
ically. Each metastable glass state then fractures into an infinite hierarchy of
sub-basins (green, yellow, and red regions). Republished with permission from
P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, Annu. Rev.
Condens. Matter. Phys. 8, 265-288 (2017). Copyright 2017 Annual Reviews, Inc.
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vanishing of the “replicon eigenvalue,” which in technical
jargon corresponds to “continuous” or full RSB (fullRSB).

In 1985, two papers further enriched this classification. Gross,
Kantor, and Sompolinsky, considering Potts glasses,11 and Gardner,
considering Ising p-spin glasses,13 both noted that after a first phase
transition to a 1RSB phase, these two REM-like models exhibit a
fullRSB transition at a lower temperature (see Fig. 2). These reports
of what was later called a “Gardner transition” were followed by
others. Yet for most of the ensuing three decades, these findings were
only mentioned anecdotally and treated as exotic features of exotic
models.

Meanwhile, the physical understanding of REM-like models
markedly improved when Kirkpatrick, Thirumalai, and Wolynes14

recognized that their phenomenology is akin to that of structural
glasses. They then realized that a first nonergodicity, dynamical tran-
sition analogous to the transition in the mode-coupling theory of
glasses,15,16 at temperature Td, precedes the actual thermodynamic
transition.17 At Td, the phase space of these mean-field models
becomes composed of an exponential (in the number of spins or par-
ticles) multiplicity of ergodic components that are dynamically inac-
cessible from one another. This multiplicity is measured by the com-
plexity, which is comparable to the entropy of a solid in excess of its
vibrational contribution, i.e., its configurational entropy.18,19 Beyond
the dynamical transition, the complexity shrinks with temperature
and vanishes at the thermodynamic transition at a finite tempera-
ture TK, as the configurational entropy seems to do in certain glass
forming liquids, leading to an entropy crisis, as first noted by Kauz-
mann.20 On the basis of this analogy, the Random first order transi-
tion (RFOT) theory of REM-like models, which was understood to
include structural glasses, was proposed.14,21,22

Over the following decades, the spherical p-spin model became
the central focus of the statistical mechanics of disordered systems,
as a prototypical model of the RFOT universality class. Because
this model does not exhibit a Gardner transition, the putative
importance of this transition on structural glasses was left com-
pletely unexplored for some time. Further consideration of Gard-
ner transitions slowly re-emerged in the late 1990s. Barrat, Franz,
and Parisi23 showed them to be fairly ubiquitous (in essentially all
spin glass models except the spherical p-spin), and Montanari and
Ricci-Tersenghi24 revisited Gardner’s work with more sophisticated
theoretical tools—naming the transition by the same token. These
studies were by then, however, quite far from the structural glass
mainstream.

III. GARDNER PHYSICS IN HARD SPHERES
Although the putative relevance of the Gardner transition to

structural glasses was first suggested decades ago,25,26 only recently
was Gardner physics fully brought to the field of amorphous solids.
This advance resulted from the remarkable convergence of three
concurrent yet independent lines of research, separately inspired
by the seminal Liu-Nagel proposal for a unified description of
amorphous solids.27

● Studies of dense sphere packings around jamming in two
and three dimensions established through numerical sim-
ulations and analytical arguments that such packings are
marginally stable,28–38 in that they display an excess of

low-energy modes that gives rise to anomalous scalings of
physical quantities around jamming.

● Numerical studies of hard sphere fluids showed that glass
formability increases with dimension,39–42 which paved the
way for numerical studies of the jamming transition in
higher dimensions.39,42–44

● In the footsteps of Ref. 25, an analytical exploration of the
glass phase of hard spheres in the mean-field, d → ∞ limit
provided an analytical phase diagram within the simplest RS
assumption.45–47

Comparing these three sets of results gave rise to a conundrum.
While the RS assumption predicts hyperstatic packings and sim-
ple critical exponents at jamming in d → ∞,46 numerical sim-
ulations32,33,39,43 and analytical arguments36 showed that isostatic
packings and a nontrivial criticality are actually observed in all
accessible d.

In order to solve this puzzle, an extended theoretical study
of infinite-dimensional hard sphere glasses was undertaken.48 The
ensuing discovery of a Gardner transition49 and of the Gardner
phase that lies beyond it, up to and including jamming,50,51 put
forward a physically coherent description of jamming. The fullRSB
solution associated with the Gardner phase indeed predicts that
jammed sphere packings are isostatic and critically nontrivial in
d → ∞ as well. Building on this finding, the rest of the infinite-
dimensional phase diagram of hard spheres was completed1,52–55,166

(see Fig. 3). Additional scaling arguments37,56,57 and analytical cal-
culations58 provided the critical scaling of the jammed phase and of
finite-temperature systems.

In hindsight, the existence of a mean-field Gardner transi-
tion upon approaching jamming should not have been so sur-
prising, because that same transition is found in essentially all

FIG. 3. Phase diagram for hard spheres in the limit d →∞. At equilibrium (solid
black line), for ' < 'd the liquid is ergodic, while for ' > 'd a large number
of ergodic clusters are separated from one another, which gives rise to equilib-
rium glass states. Upon slowly compressing any such glass state (dotted lines), a
Gardner transition (blue line) is encountered prior to reaching jamming (red line)
at infinite (reduced) pressure, p → ∞. Republished with permission from
P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, Annu. Rev.
Condens. Matter. Phys. 8, 265-288 (2017). Copyright 2017 Annual Reviews, Inc.
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REM-like models,11,13,23,24,59–62 which includes infinite-dimensional
hard spheres. (Hard spheres are nevertheless the first structural glass
model without quenched disorder in which a Gardner transition was
explicitly found.49) What was rightfully surprising is the dimensional
robustness of the jamming criticality, as discussed below. In the rest
of this section, we separately consider the Gardner transition, the
Gardner phase, and jamming and conclude by discussing possible
paths toward experimental validations of the theory.

A. Gardner transition
As further discussed in Sec. VII, the very existence of a Gardner

transition in d < 6 was (and in some ways is still) far from obvious,
based on renormalization group considerations. Hence, the first
numerical study of this transition targeted a system from a fam-
ily of idealized models in which particles interact in an abstract
space with the topology of a random graph. This topology guar-
antees that long-range spatial fluctuations are fully suppressed and
thus cannot extinguish mean-field critical points.63 Note that in the
mean-field phase diagram of Fig. 3, the Gardner transition is very
close to the dynamical transition at low densities.52 In that region,
the system cannot easily be confined within a glass basin because
of activated and hopping processes, and thus the Gardner transi-
tion cannot be properly detected. Luckily enough, in the chosen
Mari-Kurchan (MK) variant of these models (originally proposed by
Kraichnan64), equilibrium configurations can be generated at negli-
gible computational cost65–67 via the planting technique.68 This fea-
ture was essential to properly study the Gardner transition in this
system.69

With the MK results in hand as reference and with (contempo-
rary yet unrelated) stunning improvements in sampling techniques
that reach deep into the glass regime via the swap Monte Carlo algo-
rithm,70,71 the Gardner transition for hard sphere models in d = 2
and d = 3 could then be explored.72 This work first evinced that a
growing correlation length, susceptibility, and correlation time qual-
itatively consistent with the mean-field Gardner transition can be
observed in model glass formers. The numerical results obtained so
far however only qualitatively hints at a transition.

A proper finite-size scaling study should more reliably test for
the existence of a critical transition, but this project has not yet been
undertaken. An extraction of the corresponding critical exponents is
thus also missing. Such a study would certainly be computationally
challenging, but the relative robustness of the Gardner phenomenol-
ogy in hard spheres compared to the equivalent transition in spin
glasses73,74 (see Sec. VII) suggests that the analysis might not be as
painful as it first seems. Thanks to the recent extension of enhanced
sampling techniques to higher dimensions,75 similar considerations
in d = 4 and 5 might also be within reach. The complex critical-
ity scenarios proposed for this transition (see Sec. VII) could thus
be clarified. It may well be that the situations in dimensions d = 2,
3, or 4 are all different, and future work should address this question.

B. Gardner phase and off-equilibrium dynamics
The criticality of the Gardner phase beyond the transition

is theoretically less controlled than the transition itself, and the
corresponding numerical simulations are also less developed.
Because equilibrating configurations in the Gardner phase requires

prohibitively long simulation times, one possibility is to study the
off-equilibrium dynamics following quenches, as is routinely done
in spin glasses.6,76 Recent numerical works in this direction in d = 3
in Ref. 77 and d = 2 in Ref. 78 are consistent with a complex organi-
zation of vibrational states separated by a hierarchy of barriers that
gives rise to a rich aging behavior.

Other than the complex aging behavior associated with a dis-
tribution of relaxation barriers, however, few insights have been
clearly formulated. From a mean-field standpoint, solving the
out-of-equilibrium dynamics in a fullRSB phase is a daunting chal-
lenge.6,79,80 It should, nonetheless, be possible to probe numerically
and experimentally the state structure in that regime.

What has been robustly established is that after a direct quench
from the simple glass phase past the estimated location of the Gard-
ner transition, single-particle displacements exhibit a slow aging
dynamics. Even after very large times, the system does not reach
any kind of steady state. Dynamics inside a glassy basin must
therefore proceed via a very slow exploration of a large number
of states, separated by large barriers. Empirically, this implies that
quenching two copies of the same hard sphere configuration to
large pressures produces two distinct packings that are dynami-
cally inaccessible from one another over the numerical time win-
dow. It has further been demonstrated that large correlation lengths
develop and grow slowly with time after a quench.77,78,81 The bar-
riers that separate distinct packings thus correspond to highly
collective and correlated particle displacements (as already sug-
gested in Ref. 33). Furthermore, by performing multiple quenches
from a given hard sphere glass configuration, it is found that a
very large number of distinct packings can be produced, and that
these different packings are organized hierarchically,78 in a way
that is strongly reminiscent of the fullRSB description. Alterna-
tively, one can sample the nearby jammed minima and find that
they are both hierarchical and ultrametric.81 It is interesting to
emphasize that the same phenomenology is found in d = 2 hard
disks, where a sharp Gardner transition might not take place (see
Sec. VII). The phenomenology and complexity of the phase space
of hard spheres are therefore robust findings that should have
direct experimental consequences, independently of the Gardner
transition.

C. Jamming criticality
In contrast to the above two regimes, jamming criticality

presents strong agreement between theory and numerics. The mean-
field, d→∞ solution51 and scaling arguments36 predict that at jam-
ming the distributions of both small forces and small interparticle
gaps exhibit nontrivial power-law scalings. Remarkably, numerical
results for even d = 3 and d = 2 seemingly scale with those of the
same nontrivial power-law exponents,37,39,43,44 although without a
clear theoretical basis for this superuniversality (see Sec. VII). The
asymptotic scaling of the particle cage diameter upon approaching
jamming33,50,56 and of the excitation spectrum82–85 matches theoret-
ical predictions similarly closely. This agreement is not only remark-
able for the Gardner phase specifically but is also the most notable
materials prediction ever to emerge from a fullRSB analysis. Here
again, no proper study of finite-size corrections yet validates these
findings, but the robustness of existing numerical results leaves little
ambiguity.
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D. Experimental validation
Experimental efforts to detect evidence of the Gardner tran-

sition are ongoing. The first such evidence came in the form of a
study of a quasithermalized two-dimensional hard-sphere-like gran-
ular system.86,87 However, more precise measurements in this vein
may be difficult to achieve due to the need for systems to be well
thermalized in order to clearly identify signatures of a Gardner
transition (see Fig. 3). The associated structural relaxation time
is indeed well beyond experimental reach for the millimeter-size
granular particles typically used to model glasses. In this respect,
colloidal systems offer a more fruitful avenue because it is pos-
sible to combine smaller-sized particles (allowing proper ther-
malization over experimental timescales) with light-scattering or
microscopy techniques that are in principle able to resolve single-
particle dynamics even at very small length scales. A second path
to direct verification of a Gardner phase in physical systems is
offered by the short-time dynamics of the glass. Colloids within a
stable glass experience a fixed cage structure; hence, the crossover
from ballistic motion to caged behavior is expected to be sim-
ple and result in an exponential crossover in the mean squared
displacement. By contrast, in a Gardner phase, cages are them-
selves ever shifting as the system explores the hierarchical phase
space. Colloids should thus be constantly leaving small cages only
to find themselves in slightly larger cages ad infinitum. One then
expects a logarithmic growth of the mean squared displacement
with lag time. Intriguingly, a first study in this direction finds that
glassy colloidal suspensions exhibit just such a change in short-time
dynamics.88

The critical scaling of the mean squared displacement upon
approaching jamming has also been measured in a colloidal glass,89

and the results are here directly compatible with theoretical pre-
dictions. Comparable validations of the force and gap criticality at
jamming are, however, unlikely. The truly minute length and force
scales over which power-law scalings are predicted lie well below the
resolution of any existing experimental setup. Indirect measures of
the phase space structure are thus more likely to provide a real-world
connection between amorphous solids and Gardner physics in the
foreseeable future.

IV. GARDNER PHYSICS IN SOFT SPHERES
Since the initial analysis of the glass phase of hard spheres, a

much larger class of interaction potentials has been analyzed within
the realm of mean-field theory. A Gardner phase has been identified
for a number of pair potentials and a broad range of physical condi-
tions.58,90,91 In short, the mean-field approach predicts that all types
of pair potentials—including soft repulsive spheres, Lennard-Jones,
and others—can undergo a Gardner transition in some parts of their
phase diagrams, as we now detail.

A representative example (Fig. 4) is the mean-field theoretical
prediction for separately cooling and compressing an equilibrium
glass state of soft repulsive spheres. The glass is of course unsta-
ble toward melting if the transformation takes it back to the fluid
phase. More interestingly, it can undergo a Gardner transition to a
marginally stable glass phase either by cooling or by compression.
Generally, mean-field theory thus states that cooling a glass or com-
pressing a colloidal glass with repulsive interactions could lead to a
marginally stable Gardner phase.

FIG. 4. Mean-field phase diagram for soft repulsive WCA particles. The glass at
point g1 is prepared under equilibrium conditions at temperature Tg1 and density
ρg1 and is then adiabatically followed up to different temperatures and densities,
measured asw = ln[ρ/ρg1 ]. The glass state then either fluidizes (unstable region,
beyond the dashed line), remains within an ergodic cluster (simple glass phase),
or undergoes a Gardner transition (dark blue lines) to enter the Gardner phase
(light blue areas). This example illustrates that in d→∞ soft glasses can generi-
cally undergo a Gardner transition under a variety of physical conditions, including
around the jamming point wj of the glass prepared at g1. Reprinted with permis-
sion from C. Scalliet, L. Berthier, and F. Zamponi, Phys. Rev. E 99, 012107 (2019).
Copyright 2019 American Physical Society.

The theoretical suggestion that all flavors of glass formers
might undergo a Gardner transition initially raised the exciting
possibility that the physical properties of a broad class of amor-
phous materials could be characterized by the low-lying collective
excitations that characterize Gardner phases. This theoretical path
could then potentially unify the physical properties of systems as
diverse as granular materials near their jamming transition and
atomistic glass-forming materials using the concept of marginal
stability.38,49,50

A key step on this path aimed to confirm that a Gardner
transition and the physics associated with the Gardner phase can be
found in systems other than hard spheres. To this end, it is instruc-
tive to analyze models intermediate between hard spheres and
standard Lennard-Jones glass formers, such as Weeks-Chandler-
Andersen (WCA), harmonic, or Hertzian particles. In these models
of soft repulsive spheres, particles can overlap at a finite energetic
cost, controlled by an energy scale �, if the interparticle distance
is smaller than the interaction range, σ. The control parameters
of the model are thus temperature and density, as in the mean-
field analysis presented in Fig. 4. In the limit of �/kBT → 0 (which
experimentally corresponds to relatively large colloids or stiff par-
ticles), these particles are still thermally agitated but are also close
to their jamming transition.92 Computer simulations performed in
this region of the phase diagram93 confirm that all signatures of a
Gardner transition (aging, slow dynamics, and spatial correlations)
can be observed in d = 3, thus reflecting the emergence of a com-
plex phase space structure. These results show that the mean-field
analysis remains qualitatively correct for three-dimensional mod-
els, at least in a region of the phase diagram close to the jamming
transition.

Moving further away from this transition, computer simula-
tions of Lennard-Jones particles in d = 2 and soft repulsive spheres
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in d = 3 have, however, revealed that a Gardner phase is not neces-
sarily universally observed.94,95 Even when the transition is absent,
the free energy basin of the simple glass phase breaks into several
sub-basins at low temperatures,94,95 consistently with what has been
observed in many numerical studies of the potential energy land-
scape of model glasses.96–99 A more refined analysis of the asso-
ciated time and length scales, however, revealed that these sub-
basins in fact correspond to a rare population of highly localized
“defects.”94 The physics of this phenomenon thus strongly con-
trasts with the mean-field prediction, which suggests that excitations
should involve system-wide correlations. While this finding quashed
theoretical hopes of universality, it also opened a way for a more
systematic study of the interplay between extended defects, related
to the mean-field Gardner phase, and localized defects, expected to
be omnipresent in low-dimensional glasses.96–100 A promising line
of research is the discovery that localized defects may themselves
possess some universal properties.101–103 The link between localized
defects found in dense liquids far from jamming to collective excita-
tions that proliferate close to jamming in marginally stable systems
also remains to be understood.104

Interestingly, the phenomenology of these localized defects
is strongly reminiscent of the elementary excitations implicitly
assumed by the empirical two-level system descriptions, which
were first proposed more than 40 years ago but are still without a
clear microscopic origin.105,106 The search for a Gardner phase in
low-temperature glasses107 may thus provide novel computational
and experimental approaches to understand localized excitations in
low-temperature glasses, and their interplay with more extended
ones. Future work should aim at quantifying and generalizing these
findings, to couple them with quantum mechanical descriptions
that could explain the tunneling characteristics of two-level sys-
tems, and to quantitatively determine whether localized defects
are indeed responsible for the cryogenic properties of amorphous
solids.

V. GARDNER PHYSICS IN RHEOLOGY
Sections III and IV considered the emergence of a Gardner

transition in a glass state that is either compressed or cooled, which
are both isotropic transformations. Here, we consider putative sig-
natures of this same physics, but for the anisotropic transformations
that emerge in the context of rheology. More specifically, we exam-
ine the stress-strain curves and the elastic response of glass states.

A. Stress-strain curves
The study of the rheology of amorphous solids by means of

mean-field methods was initiated in Refs. 108 and 109, and addi-
tional results for d → ∞ systems were obtained in Refs. 52, 54,
58, and 110. Motivated by these results, numerical studies in d = 3
have considered elasticity, dilatancy, plasticity, marginal stability,
yielding, and shear jamming.2,111 For dynamically arrested equilib-
rium liquid configurations, the initial response to shear is found to
be perfectly elastic, and these materials can be characterized by a
shear modulus µ = dσ/dγ and dilatancy R = dP/d(γ2), where pres-
sure P and shear stress σ are conjugate observables (responses) to
' and γ, respectively. Stress and pressure thus both increase under
an applied strain at constant density. At larger strains, however,
the response becomes nonlinear and intermittent. In the mean-field
description, the Gardner transition gives rise to this behavior, but
in finite dimensions both collective and local excitations likely con-
tribute.112–122 The glass then either yields or jams, as illustrated in
the phase diagram of Fig. 5. Yielding appears in d→∞ as a spinodal
point at which the glass solution is lost via a saddle-node bifurca-
tion, leading to characteristic square-root singularities of physical
observables,52 in particular, σ and P. In d = 3, however, this sin-
gularity is smoothed by fluctuations, leading to a more complex
behavior.2,111,123,124 Jamming under shear corresponds to the joint
divergence of σ and P, and its phenomenology is similar to its
isotropic counterpart.2,110

FIG. 5. (a) Theoretical shearing phase diagram of d →∞ hard spheres prepared in an equilibrium glass state at scaled packing fraction φ̂g = 8. Reprinted with permission
from P. Urbani and F. Zamponi, Phys. Rev. Lett. 118, 038001 (2017). Copyright 2017 by the American Physical Society. The glass is first compressed at scaled packing
fraction φ̂ and then strained at shear strain γ, resulting in a (φ̂, γ) stability map. The simple glass (stable) phase is delimited by the yielding (brown) line at lower density
and by the shear jamming (blue) line at higher density. A Gardner transition (red) line delimits the Gardner (marginal) phase at high (φ̂, γ). (b) Corresponding numerical
phase diagram of d = 3 hard spheres prepared in equilibrium at 'g = 0.655. Adapted from Y. Jin, P. Urbani, F. Zamponi, and H. Yoshino, Sci. Adv. 4, eaat6387 (2018).
Copyright 2018 Author(s), licensed under a Creative Commons Attribution 4.0 License. The qualitative agreement between the mean-field prediction and the d = 3 numerical
simulations is remarkable, except in the vicinity of the critical point (gray diamond), where the shear jamming and shear yielding lines merge. The qualitative difference might
be explained either in the presence of localized plastic excitations in d = 3 systems (in which the role of the Gardner transition has yet to be clarified) or by the different nature
of the yielding transition in d = 3 (shear band nucleation vs spinodal instability).
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B. Linear response
Glasses prepared beyond the Gardner transition display a

markedly different elastic response. The simplest observable in this
context is the shear modulus, µ. In the stable solid phase, µ is given
by a single number, i.e., the elasticity of the stable glass basin. In
the Gardner phase, by contrast, the mean-field, d→∞ solution pre-
dicts that the linear response of the system takes a long time to relax1

because the ultrametric structure of glass states is associated with an
infinite hierarchy of time scales. After a short transient, the system
equilibrates in the individual glass state in which it was prepared ini-
tially, the mean squared displacement approaches a constant value
∆EA, and correspondingly the stress decays, σ(t) ∼ µ(∆EA)γ. Waiting
longer times (that diverge with the system size) allows the system
to explore a wider portion of the ultrametric tree of states. Corre-
spondingly, the mean squared displacement increases, ∆ > ∆EA, and
the stress further decays to σ(t) ∼ µ(∆)γ. The Gardner phase is then
characterized by a function µ(∆) that gives the effective shear modu-
lus of the system,53 when it is allowed to explore phase space up to a
mean squared displacement ∆. The function µ(∆) can be computed
analytically in d →∞, see Ref. 53. In particular, around jamming it
is found that µ(∆EA) ∼ Pκ, while µ(∆ < ∆EA) ∼ P ≪ µ(∆EA); hence,
a dramatic softening should be observed if the system is allowed to
leave the glass state in which it was prepared. This d→∞ prediction
has been verified numerically111,125 in d = 3 and might be related to
the experimental findings of Refs. 126 and 127.

C. Nonlinear response
Another key prediction of the mean-field, d→∞ solution con-

cerns the nonlinear elastic response. Upon approaching the Gardner
transition, all nonlinear elastic moduli are expected to diverge.58

More precisely, consider the expansion of the elastic stress in powers
of γ,

σ = µ1γ +
1
3!
µ3γ3 +⋯, µn = dnσ

dγn ∣
γ=0

, (1)

where µ1 = µ is the elastic shear modulus and µ3, µ5, . . . are non-
linear response coefficients. These quantities are random variables
because they depend on the particular glass sample under investi-
gation. Upon approaching the Gardner transition from the stable
phase, the average coefficient, µn, remains finite, but sample-to-
sample fluctuations diverge as δµ2

n ∼ ε3−2n/V , where ε is the distance
from the transition. Although fluctuations scale proportionally to
1/V, the prefactor diverges for all n > 2. The linear response there-
fore remains well defined, but sample-to-sample fluctuations of the
nonlinear moduli grow to be extremely large.

The divergence of the fluctuations of elastic moduli is related to
plasticity, i.e., the piecewise linear behavior of the stress-strain curves
in finite samples.116 A true divergence in thermodynamically equili-
brated solids requires a divergent correlation length at the Gardner
transition; the mean-field d→∞ solution thus predicts plasticity to
be extensive in the Gardner phase.58 An infinitesimal variation of
density or shear strain in that phase indeed leads to extensive rear-
rangements, i.e., avalanches.38,128,129 The size distribution of these
avalanches then scales as a power law with universal critical expo-
nents, as has been confirmed numerically.129 In summary, while the
response of the solid in the stable phase is elastic and reversible,

in the Gardner marginally stable phase the response is plastic and
irreversible, leading to divergent nonlinear susceptibilities. It is
important however to stress that in finite dimensions, localized plas-
tic excitations involving a few particles are always present, indepen-
dently of any Gardner transition;116 these localized excitations can
induce large fluctuations of the elastic moduli that should disap-
pear in the thermodynamic limit, if equilibration within the glass
basin can be reached. See Ref. 2 for a more complete discussion of
irreversibility and plasticity in this context.

Recent extension of the theory to the thermal regime using soft
harmonic spheres90,91 will likely be followed by numerical work in
finite dimension. An exciting possibility would be for these studies
to provide a sharper understanding of the rheological role of local-
ized excitations,112–122 as a counterpart of the comparable excitations
observed in isotropically cooled or compressed systems.

VI. GARDNER PHYSICS IN CRYSTALS
Although the Gardner transition has only been predicted for

systems that are fully disordered, such as spin and structural glasses,
the minimal conditions for its existence might not be so stringent.
Several authors have indeed suggested that slightly disordered crys-
tal packings display a marginal stability akin to that of fully disor-
dered jammed packings.63,131,132 In this section, we consider mini-
mally disordered crystals that exhibit a behavior reminiscent of the
Gardner physics.

It is straightforward to see how the disorder inherent to amor-
phous solids might give rise to a Gardner transition. The ultra-
metric structure of phase space follows from the hierarchy of dis-
tinct vibrational states that emerge as the system is deformed
(Fig. 6). In perfectly crystalline materials, by contrast, every particle
is contained within an identical and mechanically stable vibrational
environment. Crystals are thus marked both by highly degenerate
overconstraints and the absence of any mechanism to break this
degeneracy. For instance, all particles in a face-centered cubic (fcc)

FIG. 6. Schematic illustration of a Gardner-like scenario for polydisperse crystals.
A perfect crystal (purple particles) has only one well-separated densest packing.
A crystal of polydisperse particles (colored from red to purple, according to their
growing particle radius), by contrast, has a large number of nearly equivalent pack-
ings. Beyond the pressure onset of Gardner-like physics, at PG, such systems are
forced into irreversible constraints. For the sake of illustration, consider the particle
outlined in black. It is free to collide with all its nearest neighbors at low pressures,
but forced to have one or another set of collisional contacts (green stars) as pres-
sure increases. This overall process is cooperative and thus cannot be reduced
to such a simple local description, but this illustration can nonetheless be use-
ful to understand and explain the physics at play. Reprinted with permission from
P. Charbonneau, E. I. Corwin, L. Fu, G. Tsekenis, and M. van der Naald, Phys.
Rev. E 99, 020901(R) (2019). Copyright 2019 American Physical Society.
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crystal of hard spheres in d = 3 have exactly Z = 12 contacting neigh-
bors at close packing, far in excess of the minimal isostatic criterion,
Z = 6, for marginal stability. An extensive number of contacts can
thus be broken without destabilizing the system. However, this man-
ifold degeneracy is easily destroyed by the introduction of even just a
little dispersion in the particle size (polydispersity). Such a perturba-
tion explodes the high crystal symmetry into an enormous number
of nearly identical, but distinct close-packed structures, each ulti-
mately resulting from a unique set of correlated structural choices in
the local environment.

Recent computer simulations of slightly polydisperse three-
dimensional crystals130 have identified Gardner-like and critical
jamming signatures that are functionally identical to those found in
fully amorphous systems in d = 3: power-law scaling of forces near
jamming, a growing relaxation time as the crystal basin breaks into
smaller domains, followed by a rich aging behavior.

The simplicity of these systems and of their underlying crystal
order helps clarify the physical interpretation of the Gardner physics
more generally. In particular, we learn from polydisperse crystals
of hard particles that the position of the Gardner-like transition is
controlled by the ratio of the spread of the polydispersity, δ, to the
typical interparticle spacing set by pressure, h ∼ 1/P. For P ≫ 1/δ,
anomalous vibrational states are expected because the cage symme-
try is then destroyed (Fig. 6). In amorphous hard sphere solids, by
contrast, the position of the Gardner transition is known from the
mean-field, d → ∞ solution to be controlled by the distance of the
equilibrium glass state from 'd (see Fig. 3), but this relationship
does not provide an intuitive underlying microscopic mechanism.
The analogy with polydisperse crystals, however, suggests that the
Gardner transition emerges in amorphous solids from the geomet-
ric heterogeneity inherent to self-induced caging. Because this het-
erogeneity (as probed, for instance, by the long-time value of the
dynamical susceptibility, χ4) monotonically decreases as the dis-
tance of the equilibrium glass state from the dynamical transition
increases, we thereby obtain a more intuitive understanding of the
depression of the Gardner transition with increasing equilibrium
glass density (see Fig. 3).

The study of polydisperse crystals promises to further illumi-
nate Gardner physics. From a theoretical standpoint, no explanation
for their Gardner-like behavior exists beyond the intuitive analo-
gies presented above. Developing a framework that could explain
the similarities and differences between fully amorphous solids and
polydisperse crystals would likely provide additional insight into the
microscopic processes at play. From a computational standpoint,
the simplicity of polydisperse crystals makes them ideal for con-
ducting finite-size scaling analysis of the Gardner criticality. Such
studies could prove determinative in assessing whether a thermo-
dynamic phase transition or a crossover is actually at play. A sys-
tematic consideration of the jamming criticality could similarly be
undertaken. From an experimental standpoint, these systems offer
great promise for validating Gardner physics in the laboratory. As
we discussed in Sec. III, thermalizing colloidal or granular amor-
phous solids to the regime of interest to observe the Gardner transi-
tion is a very challenging experimental project. By contrast, crystals
of hard grains can be manually prepared close to equilibrium, and
colloidal crystallization of hard polydisperse particles is reasonably
facile.133 Because both families of materials are commercially avail-
able with a sufficiently low polydispersity (typically, δ ∼ 1%–10%) to

distinguish crystal formation from the Gardner phase, there should
be no significant barriers to a thorough experimental test of this
phenomenon. In fact, an excess of low-energy excitations around
jamming was reported in simulations63 and in experiments134 of
polydisperse crystals, before any proposal for a Gardner transition
was even made. Revisiting these systems with a more fully developed
Gardner physics in mind should therefore be reasonably produc-
tive. For instance, one could cyclically compress (without melting)
crystals of agitated polydisperse, photoelastic disks and measure the
change of the variability of the force network at jamming, depending
on the decompression amplitude. Qualitatively different memory of
previous force networks would be expected on either sides of the
transition.

VII. RG FOR THE GARDNER CRITICALITY
Gardner physics in mean-field theory is associated with the

existence of soft, long-range excitations. One should thus expect that
a full understanding of its criticality should be accessible from a
renormalization group (RG) approach. Three different types of crit-
icalities are then to be considered: (i) the jamming transition, (ii)
the Gardner phase, and (iii) the Gardner transition. Because our
understanding of the Gardner phase away from jamming is still fairly
rudimentary, in this section, we only consider types (i) and (iii).

A. Jamming criticality
As we have seen in Sec. III, jamming criticality in finite d is

extremely well described by the mean-field, d → ∞ solution. In
particular, all power-law scalings are essentially independent of d
for d ≥ 2. This superuniversal behavior is unusual. Most critical
phenomena exhibit a strong dimensional dependence at low d. A
possible explanation for this phenomenon has been suggested in
Refs. 135–137. By comparing the fluctuations of the contact num-
ber Z to its average—as is commonly done in critical phenomena
for the order parameter in a correlated volume—one concludes that
the upper critical dimension for jamming is du = 2. Adding fluc-
tuations on top of mean-field results and developing an RG treat-
ment that would confirm this interpretation without input from
numerical simulations remain, however, an open challenge. A first-
principle understanding of this remarkable phenomenon is there-
fore still lacking. Meanwhile, its lower critical dimension is still
unexplored.

B. Gardner transition
The Gardner transition in finite d is under better theoretical

control. The mean-field description of the Gardner transition is
indeed analogous to the de Almeida-Thouless transition observed
for spin glasses in an external magnetic field.142 Both transitions
display the same kind of order parameter and the same kind of col-
lective behavior (or more precisely the same kind of instability of
the disordered phase) and, hence, they share a same field theory of
critical fluctuations.143 This theoretical relationship and the activity
on the Gardner transition of the last few years have triggered several
new RG investigations of the problem.

The modern starting point is the work of Moore and Bray144

(see also Ref. 145), which showed that the basin of attraction of the
Gaussian fixed point (FP) associated with the mean-field descrip-
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FIG. 7. Schematics of possible renormalization flow scenarios for the variances of the coupling constants, σJ , and magnetic fields, σh, of a spin-glass model in d < du. Note
that even if the RG scheme starts with a uniform external field, a random field emerges after a few iterations.138 The points SG, SGH, SGc, and SGHc denote the fixed
points (FPs) associated with the spin-glass phase, the spin-glass phase in a field, the critical point for spin glasses without field, and the critical point for spin glasses in a
field, respectively. (a) In this scenario, the transition in a field is present and its associated FP likes at T = 0, i.e., the couplings and the fields become much larger than the
temperature under RG.138 (b) In this scenario, the transition in a field is present and the associated FP is standard, although nonperturbative.139 (c) In this scenario, there is
no FP in a field and, hence, no transition.140,141

tion shrinks to zero when d approaches the upper critical dimension,
du = 6, from above. This result confirmed and detailed the original
1980 work of Bray and Roberts146 that the Gaussian FP disappears
below du and that no other perturbative FP emerges in d < du. For
many decades, this disappearance was interpreted as a signature of
the nonexistence of a critical transition in this context. However,
that outcome is not the only possible one; a nonperturbative FP, and
hence a critical transition, could instead replace it. This possibility
has recently been investigated with different techniques: nonpertur-
bative renormalization group,139 high-order resummations,147 and
real space RG.138,140,141 Although the predictions of these different
analyses differ quantitatively, they all show that a nonperturbative
FP can actually exist in relatively low d.

These different RG scenarios are schematized in Fig. 7 for the
flow parameters of a spin-glass model: the variance of the magnetic
fields and of the magnetic couplings. (Although their counter-
parts for structural glasses give rise to an equivalent physics, they
are somewhat less intuitive. They involve the difference in energy
between different local particle arrangements, which leads to a
generalized field and to elastic interactions related to these local
strains.148) Figures 7(a) and 7(b) depict flows for nonperturbative FP
with a zero-temperature138 and a finite-temperature139 FP, respec-
tively. Figure 7(c) depicts the flow in the absence of a FP, and hence
of a transition. Figures 7(a) and 7(b) correspond to a case in which
a Gardner transition can take place but has different properties: a
zero-temperature FP implies activated dynamical scaling,138 whereas
a finite temperature one is associated with the usual power-law
relationship between time and length scales.139 Figure 7(c) instead
corresponds to a case without a bona fide Gardner transition. An
important issue to note is that even when a nonperturbative FP
exists, the existence of a critical transition in the physical system at
hand is not guaranteed. Its existence depends on whether the ini-
tial condition of the RG flow, i.e., the specific model considered, lies
within the basin of attraction of the FP. As a result, although the
properties of the critical transition are universal, its existence is not.
For a given d, the transition could thus be present for amorphous
solids but absent for certain spin-glass models, or present in finite-
dimensional hard spheres but not in all soft sphere models. Probing

the relationship between time and length scales is a way to ascertain
in experiments and in simulations to which basin of attraction, and
to which scenario [(a)–(c)], a given model belongs to. From a more
theoretical point of view, one could try to map the model at hand
into an effective theory, e.g., lattice spin models, that could then be
studied more easily by RG and numerical simulations. Neither has
yet been reported.

The lower critical dimension of the transition, if present, is not
known at this stage. There are, however, results for the spin-glass
transition without a field. In this case, numerical simulations,149 real
space renormalization group,138 and analysis of the low tempera-
ture phase150 have converged on the value dl ≃ 2.5. Assuming that
adding an external field makes the transition more fragile—a reason-
able but not fully motivated proposal—then one concludes that the
lower critical dimension of the Gardner transition should be equal
or higher than 2.5.

In short, the current understanding is that a Gardner transition
could take place in d = 3 and be related to a nonperturbative FP.
Future investigations using more refined RG treatments, combined
with new numerical simulations, will hopefully help close this long
and intricate line of inquiry.

VIII. GARDNER PHYSICS IN CONSTRAINT
SATISFACTION PROBLEMS

In an interesting intellectual twist, the Gardner transition,
which emerged from the study of spin glass models on fully con-
nected (all sites interacting with all others) graphs, re-emerged in the
study of spin glass models on diluted (i.e., locally tree-like) graphs, in
parallel with its consideration in structural glasses. Theoretical inter-
est in diluted spin glass models picked up speed in the early 2000s,
as interest for random versions of constraint satisfaction problems
(CSP), to which they are intimately are related,152,153 boomed. In the
most generic terms, CSP consist of finding assignments of variable
that are subject to a set of constraints. Examples include graph col-
oring (Figs. 8 and 9), constrained optimization, supervised learning,
packing of hard objects, etc. CSP also provide the building blocks of
computational complexity theory.152,153

J. Chem. Phys. 151, 010901 (2019); doi: 10.1063/1.5097175 151, 010901-9

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

FIG. 8. Sample phase diagram of the q-coloring CSP on a random regular graph with q = 4, as a function of graph connectivity c = 2α and temperature T. The zero-temperature
limit of this model illustrates the various types of instabilities discussed in the text. At low connectivity, c < cd [and more generally above the line Td(c)], the space of solutions
is ergodic. At cd, a dynamical transition gives rise to a clustered 1RSB phase. At cK [and more generally at TK(c)], a Kauzmann transition gives rise to condensed clusters of
solutions. Beyond the coloring-uncoloring (SAT-UNSAT) transition, cq, the zero-temperature energy becomes positive, hence not all constraints can typically be satisfied (red
line, analogous to the jamming line in Fig. 3). Finally, at cG [and more generally at TG(c)], a Gardner transition gives rise to a Gardner phase, within which the typical states
are marginally stable. Adapted from F. Krząkała and L. Zdeborová, Europhys. Lett. 81, 57005 (2008). Copyright 2008 IOP Publishing.

While complexity theory is only concerned with the worst cases
of a problem, interest in more representative typical cases gave
birth to a natural synergy between computer science and statisti-
cal physics. The tools developed for disordered systems were found
to be especially useful to answer questions, such as If we draw a
CSP randomly from an ensemble of problems what is its typical
complexity? Does it admit a solution? What is the structure of the
space of solutions? This association emerges from the fact that ran-
dom CSP problems can be formulated as spin-glass models with a
Hamiltonian function being zero for satisfying (SAT) assignments
and quantifying constraint violation for unsatisfying (UNSAT) ones.
The key parameter is then the ratio of the number of constraints to
the number of variables, α. Generically, problems are SAT at small
α and UNSAT at large α, with a sharp transition between the two
regimes in the thermodynamic limit of many constraints and vari-
ables.152,153 As a further twist, the statistical physics of random CSP
was also pioneered by Gardner, in her analysis of the single-layer
neural network (perceptron).154,155

The set of SAT assignment of the spherical perceptron, if not
empty, is convex and hence connected, glassy phases are not pos-
sible and studying the SAT-UNSAT transition does not require
RSB.154,155 For other prototypical CSP, such as the coloring prob-
lem, however, the space of SAT assignments is not necessarily con-
nected and only the implementation of 1RSB-based techniques156

enabled the exact computation of the SAT-UNSAT threshold.157–159

In fact, many dilute discrete random CSP belong to the class of dis-
continuous (REM-like) spin glasses. The route from the SAT to the
UNSAT phase as α increases is thus marked by several phase tran-
sitions, roughly following the RFOT scenario:160 at low α, the space
of solutions (SAT assignments) is linked by small changes in vari-
able assignments, i.e., ergodic; for α > αd, this space first undergoes
a dynamical (clustering) transition at which solutions become orga-
nized in a large number of ergodic components but separated from
one another by changes to an extensive number of variable assign-
ments; for α > αK, the space of solutions is composed of a small

number of clusters, and the SAT-UNSAT transition is reached at
α > αq.

The 1RSB ansatz used to analyze these models describes fami-
lies of statistically identical states that lie at the same mutual distance.
As in the case of spin glasses described in Sec. II, such a description
can become unstable toward a more complex organization of states,
both discussed in Refs. 159 and 161. In particular, a Gardner transi-
tion has been found in the space of solutions of a specific model of
coloring of a random graph.59

FIG. 9. Illustration of the difference between continuous and discrete variables in
the graph coloring CSP. In the standard, discrete setting, q colors are available
to color the vertices of a given graph such that no two adjacent vertices have the
same color. (In the language of statistical physics, such a solution is the ground
state of a Potts antiferromagnet.) In the continuous setting, colors are continuous
variables on a circle and can therefore be defined by an angle θ. The constraint
is that the distance between colors on contiguous vertexes should be larger than
a given threshold. For any finite graph, in the discrete problem, the set of solu-
tions is discrete and numerable. In the continuous setting, this set is continuous,
and its volume goes to zero at a jamming transition. Adapted from H. Yoshino,
SciPost Phys. 4, 040 (2018). Copyright 2018 Author(s), licensed under a Creative
Commons Attribution 4.0 License.
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Using insights from the study of structural glasses,162 it was
also realized that the SAT-UNSAT transition of CSP with contin-
uous variables (cCSP) may also naturally display a critical scaling.
Because continuous variables make the space of solutions contin-
uous, the volume of that space can smoothly shrink to zero at
the SAT-UNSAT transition, as it does at the jamming transition
(see, e.g., Fig. 9). The analogy between cCSP and jamming was
first noticed in the MK model of spheres63 (discussed in Sec. III).
Although it was noted at the time that low-frequency excitations
around jammed minima63 are very similar to those observed near
jamming in more realistic models,28–31,33 this hint of a possible
relation between jamming criticality and the Gardner phase was
overlooked.

It is rather in a nonconvex generalization of Gardner’s percep-
tron problem that the relation between jamming and the Gardner
phase in cCSP was first fully developed.162 Remarkably, isostatic
jamming in this model is found in the Gardner phase and dis-
plays the same critical properties as jamming in hard spheres. It
has thus been conjectured that a unique universality class encap-
sulates all of critical jamming. A variety of models, including the
high-dimensional vector spin models with excluded volume interac-
tion,151 feed-forward neural networks with a single hidden layer and
fixed hidden-to-output weights,163 and deeper neural networks,164

further support this claim. A more complete theory of critical jam-
ming is, however, sorely needed. The study of jamming on diluted
random cCSP, which has not yet been tackled, might also provide
insights into the role of finite-dimensional effects.

IX. CONCLUSION
The last few years have seen an explosion of research motivated

by the discovery of a Gardner transition in the mean-field, d → ∞
solution of hard spheres. Although the initial hope of having a single
transition unify the description of low-temperature glasses has been
tempered, the insights it has provided are of no less significance.
As mentioned in this perspective, a number of questions about the
finite-dimensional Gardner transition remain actively pursued in
model glass formers, in cCSP, and in RG. Of these, we are especially
excited by the experimental tests made possible by recent theoreti-
cal and computational advances, and by the theoretical puzzle of the
superuniversal jamming criticality. In addition, recent attempts at
describing the jamming transition of slightly aspherical particles,165

which are surprisingly a lot more complex than simple spherical
glass formers, suggest that the accompanying Gardner physics might
be richer still.

On the 30th anniversary of the untimely passing of Elizabeth
Gardner, it is a sort of intellectual justice that her deep physical
insights should still carry statistical mechanics forward.

ACKNOWLEDGMENTS
Results discussed in this perspective article have been obtained

within the Simons Collaboration “Cracking the Glass Problem,” in
a large collaborative research effort involving several PIs other than
the authors (J. Kurchan, A. Liu, S. Nagel, G. Parisi, and M. Wyart)
as well as many affiliates, postdocs, and Ph.D. students (A. Altieri,
C. Brito, E. DeGiuli, D. Hexner, S. Hwang, H. Ikeda, J. Kundu,
E. Lerner, Q. Liao, M. Müller, M. Ozawa, T. Rizzo, C. Scalliet,

B. Seoane, J. P. Sethna, S. Spigler, G. Tsekenis, P. Urbani, S. Yaida,
and H. Yoshino). We thank all of them as well as all the other col-
leagues with whom we have had the pleasure to carry significant
parts of the work described above, in particular, M. C. Angelini,
K. Daniels, O. Dauchot, Y. Jin, F. Ladieu, and C. Rainone. We fur-
ther acknowledge funding from the Simons Foundation (Grant Nos.
454933 L.B., 454935 G.B., 454937 P.C., 454939 E.I.C., 454941 S.F.,
and 454955 F.Z.) and from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation
programme (Grant Agreement No. 723955—GlassUniversality).
The writing of this publication was supported in part by the National
Science Foundation under Grant No. NSF PHY-1748958. S.F. is a
member of the Institut Universitaire de France.

REFERENCES
1P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, “Glass
and jamming transitions: From exact results to finite-dimensional descriptions,”
Annu. Rev. Condens. Matter Phys. 8, 265–288 (2017).
2Y. Jin, P. Urbani, F. Zamponi, and H. Yoshino, “A stability-reversibility map uni-
fies elasticity, plasticity, yielding and jamming in hard sphere glasses,” Sci. Adv. 4,
eaat6387 (2018).
3D. Sherrington and S. Kirkpatrick, “Solvable model of a spin-glass,” Phys. Rev.
Lett. 35, 1792 (1975).
4G. Parisi, “Infinite number of order parameters for spin-glasses,” Phys. Rev. Lett.
43, 1754 (1979).
5M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond
(World Scientific, 1987).
6L. F. Cugliandolo and J. Kurchan, “On the out-of-equilibrium relaxation of the
Sherrington-Kirkpatrick model,” J. Phys. A: Math. Gen. 27, 5749 (1994).
7M. Talagrand, Spin Glasses: A Challenge for Mathematicians: Cavity and Mean
Field Models (Springer, 2003).
8D. Panchenko, The Sherrington-Kirkpatrick Model (Springer Science & Business
Media, 2013).
9B. Derrida, “Random-energy model: An exactly solvable model of disordered
systems,” Phys. Rev. B 24, 2613 (1981).
10G. Toulouse and M. Gabay, “Mean field theory for Heisenberg spin glasses,”
J. Phys. Lett. 42, 103–106 (1981).
11D. J. Gross, I. Kanter, and H. Sompolinsky, “Mean-field theory of the Potts
glass,” Phys. Rev. Lett. 55, 304–307 (1985).
12B. Derrida, “A generalization of the random energy model which includes
correlations between energies,” J. Phys. Lett. 46, 401–407 (1985).
13E. Gardner, “Spin glasses with p-spin interactions,” Nucl. Phys. B 257, 747–765
(1985).
14T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, “Scaling concepts for the
dynamics of viscous liquids near an ideal glassy state,” Phys. Rev. A 40, 1045–1054
(1989).
15W. Götze, “Recent tests of the mode-coupling theory for glassy dynamics,”
J. Phys.: Condens. Matter 11, A1–A45 (1999).
16W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling
Theory (Oxford University Press, 2008).
17T. R. Kirkpatrick and D. Thirumalai, “Dynamics of the structural glass transi-
tion and the p-spin-interaction spin-glass model,” Phys. Rev. Lett. 58, 2091–2094
(1987).
18L. Berthier and G. Biroli, “Theoretical perspective on the glass transition and
amorphous materials,” Rev. Mod. Phys. 83, 587–645 (2011).
19L. Berthier, M. Ozawa, and C. Scalliet, “Configurational entropy of glass-
forming liquids,” J. Chem. Phys. 150, 160902 (2019).
20W. Kauzmann, “The glassy state and the behaviour of liquids at low tempera-
ture,” Chem. Rev. 43, 219–256 (1948).
21V. Lubchenko and P. G. Wolynes, “Theory of structural glasses and super-
cooled liquids,” Annu. Rev. Phys. Chem. 58, 235–266 (2007); e-print arXiv:cond-
mat/0607349.

J. Chem. Phys. 151, 010901 (2019); doi: 10.1063/1.5097175 151, 010901-11

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1146/annurev-conmatphys-031016-025334
https://doi.org/10.1126/sciadv.aat6387
https://doi.org/10.1103/physrevlett.35.1792
https://doi.org/10.1103/physrevlett.35.1792
https://doi.org/10.1103/physrevlett.43.1754
https://doi.org/10.1088/0305-4470/27/17/011
https://doi.org/10.1103/physrevb.24.2613
https://doi.org/10.1051/jphyslet:01981004205010300
https://doi.org/10.1103/physrevlett.55.304
https://doi.org/10.1051/jphyslet:01985004609040100
https://doi.org/10.1016/0550-3213(85)90374-8
https://doi.org/10.1103/physreva.40.1045
https://doi.org/10.1088/0953-8984/11/10a/002
https://doi.org/10.1103/physrevlett.58.2091
https://doi.org/10.1103/revmodphys.83.587
https://doi.org/10.1063/1.5091961
https://doi.org/10.1021/cr60135a002
https://doi.org/10.1146/annurev.physchem.58.032806.104653
http://arxiv.org/abs/cond-mat/0607349
http://arxiv.org/abs/cond-mat/0607349


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

22Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applica-
tions, edited by P. Wolynes and V. Lubchenko (Wiley & Sons, 2012).
23A. Barrat, S. Franz, and G. Parisi, “Temperature evolution and bifurcations
of metastable states in mean-field spin glasses, with connections with structural
glasses,” J. Phys. A: Math. Gen. 30, 5593–5612 (1997).
24A. Montanari and F. Ricci-Tersenghi, “On the nature of the low-temperature
phase in discontinuous mean-field spin glasses,” Eur. Phys. J. B 33, 339–346
(2003).
25T. R. Kirkpatrick and P. G. Wolynes, “Connections between some kinetic and
equilibrium theories of the glass transition,” Phys. Rev. A 35, 3072–3080 (1987).
26T. R. Kirkpatrick and P. G. Wolynes, “Stable and metastable states in mean-field
Potts and structural glasses,” Phys. Rev. B 36, 8552–8564 (1987).
27A. J. Liu and S. R. Nagel, “Nonlinear dynamics: Jamming is not just cool any
more,” Nature 396, 21–22 (1998).
28C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, “Random packings of
frictionless particles,” Phys. Rev. Lett. 88, 075507 (2002).
29C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, “Jamming at zero temper-
ature and zero applied stress: The epitome of disorder,” Phys. Rev. E 68, 011306
(2003).
30M. Wyart, S. Nagel, and T. Witten, “Geometric origin of excess low-frequency
vibrational modes in weakly connected amorphous solids,” Europhys. Lett. 72,
486–492 (2005).
31M. Wyart, L. Silbert, S. Nagel, and T. Witten, “Effects of compression on
the vibrational modes of marginally jammed solids,” Phys. Rev. E 72, 051306
(2005).
32C. Brito and M. Wyart, “On the rigidity of a hard-sphere glass near random
close packing,” Europhys. Lett. 76, 149–155 (2006).
33C. Brito and M. Wyart, “Geometric interpretation of previtrification in hard
sphere liquids,” J. Chem. Phys. 131, 024504 (2009).
34A. J. Liu and S. R. Nagel, “The jamming transition and the marginally jammed
solid,” Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010).
35A. Liu, S. Nagel, W. Van Saarloos, and M. Wyart, “The jamming scenario—An
introduction and outlook,” in Dynamical Heterogeneities and Glasses, edited by
L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford
University Press, 2011).
36M. Wyart, “Marginal stability constrains force and pair distributions at random
close packing,” Phys. Rev. Lett. 109, 125502 (2012).
37E. Lerner, G. During, and M. Wyart, “Low-energy non-linear excitations in
sphere packings,” Soft Matter 9, 8252–8263 (2013).
38M. Müller and M. Wyart, “Marginal stability in structural, spin, and electron
glasses,” Annu. Rev. Condens. Matter Phys. 6, 177 (2015).
39M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato, “Packing hyperspheres in
high-dimensional Euclidean spaces,” Phys. Rev. E 74, 041127 (2006).
40J. A. van Meel, B. Charbonneau, A. Fortini, and P. Charbonneau, “Hard-sphere
crystallization gets rarer with increasing dimension,” Phys. Rev. E 80, 061110
(2009).
41P. Charbonneau, A. Ikeda, J. A. van Meel, and K. Miyazaki, “Numerical and
theoretical study of a monodisperse hard-sphere glass former,” Phys. Rev. E 81,
040501 (2010).
42P. Charbonneau, A. Ikeda, G. Parisi, and F. Zamponi, “Glass transition and
random close packing above three dimensions,” Phys. Rev. Lett. 107, 185702
(2011).
43P. Charbonneau, E. I. Corwin, G. Parisi, and F. Zamponi, “Universal
microstructure and mechanical stability of jammed packings,” Phys. Rev. Lett.
109, 205501 (2012).
44P. Charbonneau, E. I. Corwin, G. Parisi, and F. Zamponi, “Jamming criticality
revealed by removing localized buckling excitations,” Phys. Rev. Lett. 114, 125504
(2015).
45G. Parisi and F. Zamponi, “The ideal glass transition of hard spheres,” J. Chem.
Phys. 123, 144501 (2005).
46G. Parisi and F. Zamponi, “Mean-field theory of hard sphere glasses and
jamming,” Rev. Mod. Phys. 82, 789–845 (2010).
47H. Jacquin, L. Berthier, and F. Zamponi, “Microscopic mean-field theory of the
jamming transition,” Phys. Rev. Lett. 106, 135702 (2011).

48J. Kurchan, G. Parisi, and F. Zamponi, “Exact theory of dense amorphous hard
spheres in high dimension. I. The free energy,” J. Stat. Mech. 2012, P10012.
49J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, “Exact theory of dense amor-
phous hard spheres in high dimension. II. The high density regime and the
Gardner transition,” J. Phys. Chem. B 117, 12979–12994 (2013).
50P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, “Fractal free
energies in structural glasses,” Nat. Commun. 5, 3725 (2014).
51P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, “Exact the-
ory of dense amorphous hard spheres in high dimension. III. The full replica
symmetry breaking solution,” J. Stat. Mech. 2014, P10009.
52C. Rainone, P. Urbani, H. Yoshino, and F. Zamponi, “Following the evolu-
tion of hard sphere glasses in infinite dimensions under external perturbations:
Compression and shear strain,” Phys. Rev. Lett. 114, 015701 (2015).
53H. Yoshino and F. Zamponi, “Shear modulus of glasses: Results from the full
replica-symmetry-breaking solution,” Phys. Rev. E 90, 022302 (2014).
54C. Rainone and P. Urbani, “Following the evolution of glassy states under exter-
nal perturbations: The full replica symmetry breaking solution,” J. Stat. Mech.
2016, 053302.
55An extension of the mean-field phase diagram shown in Fig. 3 to account
for finite-dimensional fluctuations and activated processes was also discussed in
Ref. 166.
56E. DeGiuli, E. Lerner, C. Brito, and M. Wyart, “Force distribution affects vibra-
tional properties in hard-sphere glasses,” Proc. Natl. Acad. Sci. U. S. A. 111,
17054–17059 (2014).
57E. DeGiuli, E. Lerner, and M. Wyart, “Theory of the jamming transition at finite
temperature,” J. Chem. Phys. 142, 164503 (2015).
58G. Biroli and P. Urbani, “Breakdown of elasticity in amorphous solids,” Nat.
Phys. 12, 1130–1133 (2016).
59F. Krzakała and L. Zdeborová, “Potts glass on random graphs,” Europhys. Lett.
81, 57005 (2008).
60F. Krzakała and L. Zdeborová, “Following Gibbs states adiabatically–the energy
landscape of mean-field glassy systems,” Europhys. Lett. 90, 66002 (2010).
61Y. Sun, A. Crisanti, F. Krzakała, L. Leuzzi, and L. Zdeborová, “Following states in
temperature in the spherical s + p-spin glass model,” J. Stat. Mech. 2012, P07002.
62T. Rizzo, “Replica-symmetry-breaking transitions and off-equilibrium dynam-
ics,” Phys. Rev. E 88, 032135 (2013).
63R. Mari, F. Krzakała, and J. Kurchan, “Jamming versus glass transitions,” Phys.
Rev. Lett. 103, 025701 (2009).
64R. H. Kraichnan, “Stochastic models for many-body systems. i. infinite systems
in thermal equilibrium,” J. Math. Phys. 3, 475–495 (1962).
65R. Mari and J. Kurchan, “Dynamical transition of glasses: From exact to
approximate,” J. Chem. Phys. 135, 124504 (2011).
66M. Mézard, G. Parisi, M. Tarzia, and F. Zamponi, “On the solution of a ‘solvable’
model of an ideal glass of hard spheres displaying a jamming transition,” J. Stat.
Mech. 2011, P03002.
67P. Charbonneau, Y. Jin, G. Parisi, and F. Zamponi, “Hopping and the Stokes–
Einstein relation breakdown in simple glass formers,” Proc. Natl. Acad. Sci.
U. S. A. 111, 15025–15030 (2014).
68F. Krzakała and L. Zdeborová, “Hiding quiet solutions in random constraint
satisfaction problems,” Phys. Rev. Lett. 102, 238701 (2009).
69P. Charbonneau, Y. Jin, G. Parisi, C. Rainone, B. Seoane, and F. Zamponi,
“Numerical detection of the Gardner transition in a mean-field glass former,”
Phys. Rev. E 92, 012316 (2015).
70L. Berthier, D. Coslovich, A. Ninarello, and M. Ozawa, “Equilibrium sampling of
hard spheres up to the jamming density and beyond,” Phys. Rev. Lett. 116, 238002
(2016).
71A. Ninarello, L. Berthier, and D. Coslovich, “Models and algorithms for the next
generation of glass transition studies,” Phys. Rev. X 7, 021039 (2017).
72L. Berthier, P. Charbonneau, Y. Jin, G. Parisi, B. Seoane, and F. Zamponi,
“Growing timescales and lengthscales characterizing vibrations of amorphous
solids,” Proc. Natl. Acad. Sci. U. S. A. 113, 8397–8401 (2016).
73L. Leuzzi, G. Parisi, F. Ricci-Tersenghi, and J. J. Ruiz-Lorenzo, “Ising spin-glass
transition in a magnetic field outside the limit of validity of mean-field theory,”
Phys. Rev. Lett. 103, 267201 (2009).

J. Chem. Phys. 151, 010901 (2019); doi: 10.1063/1.5097175 151, 010901-12

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1088/0305-4470/30/16/006
https://doi.org/10.1140/epjb/e2003-00174-7
https://doi.org/10.1103/physreva.35.3072
https://doi.org/10.1103/physrevb.36.8552
https://doi.org/10.1038/23819
https://doi.org/10.1103/physrevlett.88.075507
https://doi.org/10.1103/physreve.68.011306
https://doi.org/10.1209/epl/i2005-10245-5
https://doi.org/10.1103/physreve.72.051306
https://doi.org/10.1209/epl/i2006-10238-x
https://doi.org/10.1063/1.3157261
https://doi.org/10.1146/annurev-conmatphys-070909-104045
https://doi.org/10.1103/physrevlett.109.125502
https://doi.org/10.1039/c3sm50515d
https://doi.org/10.1146/annurev-conmatphys-031214-014614
https://doi.org/10.1103/physreve.74.041127
https://doi.org/10.1103/physreve.80.061110
https://doi.org/10.1103/physreve.81.040501
https://doi.org/10.1103/physrevlett.107.185702
https://doi.org/10.1103/physrevlett.109.205501
https://doi.org/10.1103/physrevlett.114.125504
https://doi.org/10.1063/1.2041507
https://doi.org/10.1063/1.2041507
https://doi.org/10.1103/revmodphys.82.789
https://doi.org/10.1103/physrevlett.106.135702
https://doi.org/10.1088/1742-5468/2012/10/p10012
https://doi.org/10.1021/jp402235d
https://doi.org/10.1038/ncomms4725
https://doi.org/10.1088/1742-5468/2014/10/p10009
https://doi.org/10.1103/physrevlett.114.015701
https://doi.org/10.1103/physreve.90.022302
https://doi.org/10.1088/1742-5468/2016/05/053302
https://doi.org/10.1073/pnas.1415298111
https://doi.org/10.1063/1.4918737
https://doi.org/10.1038/nphys3845
https://doi.org/10.1038/nphys3845
https://doi.org/10.1209/0295-5075/81/57005
https://doi.org/10.1209/0295-5075/90/66002
https://doi.org/10.1088/1742-5468/2012/07/p07002
https://doi.org/10.1103/physreve.88.032135
https://doi.org/10.1103/physrevlett.103.025701
https://doi.org/10.1103/physrevlett.103.025701
https://doi.org/10.1063/1.1724248
https://doi.org/10.1063/1.3626802
https://doi.org/10.1088/1742-5468/2011/03/p03002
https://doi.org/10.1088/1742-5468/2011/03/p03002
https://doi.org/10.1073/pnas.1417182111
https://doi.org/10.1073/pnas.1417182111
https://doi.org/10.1103/physrevlett.102.238701
https://doi.org/10.1103/physreve.92.012316
https://doi.org/10.1103/physrevlett.116.238002
https://doi.org/10.1103/physrevx.7.021039
https://doi.org/10.1073/pnas.1607730113
https://doi.org/10.1103/physrevlett.103.267201


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

74R. A. Banos, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion, A. Gordillo-Guerrero,
M. Guidetti, D. Iniguez, A. Maiorano, E. Marinari, V. Martin-Mayor, J. Monforte-
Garcia, A. Munoz Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, J. J. Ruiz-
Lorenzo, S. F. Schifano, B. Seoane, A. Tarancon, P. Tellez, R. Tripiccione, and
D. Yllanes, “Thermodynamic glass transition in a spin glass without time-reversal
symmetry,” Proc. Natl. Acad. Sci. U. S. A. 109, 6452–6456 (2012).
75L. Berthier, P. Charbonneau, and J. Kundu, “Bypassing sluggishness: Swap
algorithm and glassiness in high dimensions,” Phys. Rev. E 99, 031301 (2019).
76E. Vincent, J. Hammann, M. Ocio, J.-P. Bouchaud, and L. F. Cugliandolo, “Slow
dynamics and aging in spin glasses,” in Complex Behaviour of Glassy Systems
(Springer, 1997), pp. 184–219.
77B. Seoane and F. Zamponi, “Spin-glass-like aging in colloidal and granular
glasses,” Soft Matter 14, 5222–5234 (2018).
78Q. Liao and L. Berthier, “Hierarchical landscape of hard disk glasses,” Phys. Rev.
X 9, 011049 (2019).
79T. Maimbourg, J. Kurchan, and F. Zamponi, “Solution of the dynamics of
liquids in the large-dimensional limit,” Phys. Rev. Lett. 116, 015902 (2016).
80E. Agoritsas, T. Maimbourg, and F. Zamponi, “Out-of-equilibrium dynamical
equations of infinite-dimensional particle systems. I. The isotropic case,” J. Phys.
A: Math. Theor. 52, 144002 (2019).
81R. C. Dennis and E. I. Corwin, “The jamming energy landscape is hierarchical
and ultrametric” (unpublished).
82E. DeGiuli, A. Laversanne-Finot, G. Düring, E. Lerner, and M. Wyart, “Effects
of coordination and pressure on sound attenuation, boson peak and elasticity in
amorphous solids,” Soft Matter 10, 5628–5644 (2014).
83S. Franz, G. Parisi, P. Urbani, and F. Zamponi, “Universal spectrum of normal
modes in low-temperature glasses,” Proc. Natl. Acad. Sci. U. S. A. 112, 14539–
14544 (2015).
84P. Charbonneau, E. I. Corwin, G. Parisi, A. Poncet, and F. Zamponi, “Universal
non-Debye scaling in the density of states of amorphous solids,” Phys. Rev. Lett.
117, 045503 (2016).
85H. Mizuno, H. Shiba, and A. Ikeda, “Continuum limit of the vibrational
properties of amorphous solids,” Proc. Natl. Acad. Sci. U. S. A. 114, E9767 (2017).
86A. Seguin and O. Dauchot, “Experimental evidence of the Gardner phase in a
granular glass,” Phys. Rev. Lett. 117, 228001 (2016).
87C. S. O’Hern, “Viewpoint: Signs of a Gardner transition in a granular glass,”
Physics 9, 133 (2016).
88A. P. Hammond and E. I. Corwin, “Direct observation of the Gardner/marginal
glass transition within a colloidal glass” (unpublished).
89R. Zargar, E. DeGiuli, and D. Bonn, “Scaling for hard-sphere colloidal glasses
near jamming,” Europhys. Lett. 116, 68004 (2017).
90G. Biroli and P. Urbani, “Liu-Nagel phase diagrams in infinite dimension,”
SciPost Phys. 4, 020 (2018).
91C. Scalliet, L. Berthier, and F. Zamponi, “Marginally stable phases in mean-field
structural glasses,” Phys. Rev. E 99, 012107 (2019).
92L. Berthier and T. A. Witten, “Glass transition of dense fluids of hard and
compressible spheres,” Phys. Rev. E 80, 021502 (2009).
93C. Scalliet and L. Berthier, “Rejuvenation and memory effects in a structural
glass,” e-print arXiv:1902.08082 (2019).
94C. Scalliet, L. Berthier, and F. Zamponi, “Absence of marginal stability in a
structural glass,” Phys. Rev. Lett. 119, 205501 (2017).
95B. Seoane, D. R. Reid, J. J. de Pablo, and F. Zamponi, “Low-temperature
anomalies of a vapor deposited glass,” Phys. Rev. Mater. 2, 015602 (2018).
96M. Goldstein, “Viscous liquids and the glass transition: A potential energy
barrier picture,” J. Chem. Phys. 51, 3728–3739 (1969).
97F. H. Stillinger and T. A. Weber, “Hidden structure in liquids,” Phys. Rev. A 25,
978–989 (1982).
98D. Wales, Energy Landscapes: Applications to Clusters, Biomolecules and Glasses
(Cambridge University Press, 2003).
99A. Heuer, “Exploring the potential energy landscape of glass-forming systems:
From inherent structures via metabasins to macroscopic transport,” J. Phys.:
Condens. Matter 20, 373101 (2008).
100V. Lubchenko and P. G. Wolynes, “The origin of the boson peak and thermal
conductivity plateau in low-temperature glasses,” Proc. Natl. Acad. Sci. U. S. A.
100, 1515–1518 (2003).

101E. Lerner, G. Düring, and E. Bouchbinder, “Statistics and properties of low-
frequency vibrational modes in structural glasses,” Phys. Rev. Lett. 117, 035501
(2016).
102G. Kapteijns, E. Bouchbinder, and E. Lerner, “Universal nonphononic density
of states in 2d, 3d, and 4d glasses,” Phys. Rev. Lett. 121, 055501 (2018).
103L. Wang, A. Ninarello, P. Guan, L. Berthier, G. Szamel, and E. Flenner, “Low-
frequency vibrational modes of stable glasses,” Nat. Commun. 10, 26 (2019).
104M. Shimada, H. Mizuno, M. Wyart, and A. Ikeda, “Spatial structure of quasilo-
calized vibrations in nearly jammed amorphous solids,” Phys. Rev. E 98, 060901
(2018).
105P. W. Anderson, B. Halperin, and C. M. Varma, “Anomalous low-temperature
thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1–9 (1972).
106W. A. Phillips, “Two-level states in glasses,” Rep. Prog. Phys. 50, 1657
(1987).
107K. Geirhos, P. Lunkenheimer, and A. Loidl, “Johari-goldstein relaxation far
below Tg : Experimental evidence for the Gardner transition in structural glasses?,”
Phys. Rev. Lett. 120, 085705 (2018).
108H. Yoshino and M. Mézard, “Emergence of rigidity at the structural glass
transition: A first-principles computation,” Phys. Rev. Lett. 105, 015504 (2010).
109H. Yoshino, “Replica theory of the rigidity of structural glasses,” J. Chem. Phys.
136, 214108 (2012).
110P. Urbani and F. Zamponi, “Shear yielding and shear jamming of dense hard
sphere glasses,” Phys. Rev. Lett. 118, 038001 (2017).
111Y. Jin and H. Yoshino, “Exploring the complex free-energy landscape of the
simplest glass by rheology,” Nat. Commun. 8, 14935 (2017).
112C. E. Maloney and A. Lemaître, “Amorphous systems in athermal, quasistatic
shear,” Phys. Rev. E 74, 016118 (2006).
113M. Tsamados, A. Tanguy, C. Goldenberg, and J.-L. Barrat, “Local elasticity map
and plasticity in a model Lennard-Jones glass,” Phys. Rev. E 80, 026112 (2009).
114D. Rodney, A. Tanguy, and D. Vandembroucq, “Modeling the mechanics of
amorphous solids at different length scale and time scale,” Modell. Simul. Mater.
Sci. Eng. 19, 083001 (2011).
115M. L. Manning and A. J. Liu, “Vibrational modes identify soft spots in a sheared
disordered packing,” Phys. Rev. Lett. 107, 108302 (2011).
116H. Hentschel, S. Karmakar, E. Lerner, and I. Procaccia, “Do athermal amor-
phous solids exist?,” Phys. Rev. E 83, 061101 (2011).
117A. Zaccone and E. Scossa-Romano, “Approximate analytical description of the
nonaffine response of amorphous solids,” Phys. Rev. B 83, 184205 (2011).
118J. Lin, E. Lerner, A. Rosso, and M. Wyart, “Scaling description of the yielding
transition in soft amorphous solids at zero temperature,” Proc. Natl. Acad. Sci.
U. S. A. 111, 14382–14387 (2014).
119S. S. Schoenholz, A. J. Liu, R. A. Riggleman, and J. Rottler, “Understanding
plastic deformation in thermal glasses from single-soft-spot dynamics,” Phys. Rev.
X 4, 031014 (2014).
120S. Patinet, D. Vandembroucq, and M. L. Falk, “Connecting local yield stresses
with plastic activity in amorphous solids,” Phys. Rev. Lett. 117, 045501 (2016).
121H. J. Hwang, R. A. Riggleman, and J. C. Crocker, “Understanding soft glassy
materials using an energy landscape approach,” Nat. Mater. 15, 1031 (2016).
122Z. Schwartzman-Nowik, E. Lerner, and E. Bouchbinder, “Anisotropic struc-
tural predictor in glassy materials,” e-print arXiv:1901.05202 (2019).
123G. Parisi, I. Procaccia, C. Rainone, and M. Singh, “Shear bands as manifestation
of a criticality in yielding amorphous solids,” Proc. Natl. Acad. Sci. U. S. A. 114,
5577–5582 (2017).
124M. Ozawa, L. Berthier, G. Biroli, A. Rosso, and G. Tarjus, “Random critical
point separates brittle and ductile yielding transitions in amorphous materials,”
Proc. Natl. Acad. Sci. U. S. A. 115, 6656 (2018).
125D. Nakayama, H. Yoshino, and F. Zamponi, “Protocol-dependent shear mod-
ulus of amorphous solids,” J. Stat. Mech. 2016, 104001.
126M. Otsuki and H. Hayakawa, “Avalanche contribution to shear modulus of
granular materials,” Phys. Rev. E 90, 042202 (2014).
127C. Coulais, A. Seguin, and O. Dauchot, “Shear modulus and dilatancy softening
in granular packings above jamming,” Phys. Rev. Lett. 113, 198001 (2014).
128P. Le Doussal, M. Müller, and K. J. Wiese, “Avalanches in mean-field models
and the Barkhausen noise in spin-glasses,” Europhys. Lett. 91, 57004 (2010).

J. Chem. Phys. 151, 010901 (2019); doi: 10.1063/1.5097175 151, 010901-13

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1073/pnas.1203295109
https://doi.org/10.1103/physreve.99.031301
https://doi.org/10.1039/c8sm00859k
https://doi.org/10.1103/physrevx.9.011049
https://doi.org/10.1103/physrevx.9.011049
https://doi.org/10.1103/physrevlett.116.015902
https://doi.org/10.1088/1751-8121/ab099d
https://doi.org/10.1088/1751-8121/ab099d
https://doi.org/10.1039/c4sm00561a
https://doi.org/10.1073/pnas.1511134112
https://doi.org/10.1103/physrevlett.117.045503
https://doi.org/10.1073/pnas.1709015114
https://doi.org/10.1103/physrevlett.117.228001
https://doi.org/10.1103/physics.9.133
https://doi.org/10.1209/0295-5075/116/68004
https://doi.org/10.21468/scipostphys.4.4.020
https://doi.org/10.1103/physreve.99.012107
https://doi.org/10.1103/physreve.80.021502
http://arxiv.org/abs/1902.08082
https://doi.org/10.1103/physrevlett.119.205501
https://doi.org/10.1103/physrevmaterials.2.015602
https://doi.org/10.1063/1.1672587
https://doi.org/10.1103/physreva.25.978
https://doi.org/10.1088/0953-8984/20/37/373101
https://doi.org/10.1088/0953-8984/20/37/373101
https://doi.org/10.1073/pnas.252786999
https://doi.org/10.1103/physrevlett.117.035501
https://doi.org/10.1103/physrevlett.121.055501
https://doi.org/10.1038/s41467-018-07978-1
https://doi.org/10.1103/physreve.98.060901
https://doi.org/10.1080/14786437208229210
https://doi.org/10.1088/0034-4885/50/12/003
https://doi.org/10.1103/physrevlett.120.085705
https://doi.org/10.1103/physrevlett.105.015504
https://doi.org/10.1063/1.4722343
https://doi.org/10.1103/physrevlett.118.038001
https://doi.org/10.1038/ncomms14935
https://doi.org/10.1103/physreve.74.016118
https://doi.org/10.1103/physreve.80.026112
https://doi.org/10.1088/0965-0393/19/8/083001
https://doi.org/10.1088/0965-0393/19/8/083001
https://doi.org/10.1103/physrevlett.107.108302
https://doi.org/10.1103/physreve.83.061101
https://doi.org/10.1103/physrevb.83.184205
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1103/physrevx.4.031014
https://doi.org/10.1103/physrevx.4.031014
https://doi.org/10.1103/physrevlett.117.045501
https://doi.org/10.1038/nmat4663
http://arxiv.org/abs/1901.05202
https://doi.org/10.1073/pnas.1700075114
https://doi.org/10.1073/pnas.1806156115
https://doi.org/10.1088/1742-5468/2016/10/104001
https://doi.org/10.1103/physreve.90.042202
https://doi.org/10.1103/physrevlett.113.198001
https://doi.org/10.1209/0295-5075/91/57004


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

129S. Franz and S. Spigler, “Mean-field avalanches in jammed spheres,” Phys. Rev.
E 95, 022139 (2017).
130P. Charbonneau, E. I. Corwin, L. Fu, G. Tsekenis, and M. van der Naald,
“Glassy, Gardner-like phenomenology in minimally polydisperse crystalline sys-
tems,” Phys. Rev. E 99, 020901(R) (2019).
131C. P. Goodrich, A. J. Liu, and S. R. Nagel, “Solids between the mechanical
extremes of order and disorder,” Nat. Phys. 10, 578 (2014).
132R. Milkus and A. Zaccone, “Local inversion-symmetry breaking controls the
boson peak in glasses and crystals,” Phys. Rev. B 93, 094204 (2016).
133P. Pusey and W. van Megen, “Phase behavior of concentrated suspensions of
nearly hard colloidal spheres,” Nature 320, 340–342 (1986).
134D. Kaya, N. L. Green, C. E. Maloney, and M. F. Islam, “Normal modes and
density of states of disordered colloidal solids,” Science 329, 656 (2010).
135M. Wyart, “On the rigidity of amorphous solids,” Ann. Phys. 30, 1–96 (2005).
136C. P. Goodrich, A. J. Liu, and S. R. Nagel, “Finite-size scaling at the jamming
transition,” Phys. Rev. Lett. 109, 095704 (2012).
137D. Hexner, P. Urbani, and F. Zamponi, “Can a large packing be assembled from
smaller ones?,” e-print arXiv:1902.00630 (2019).
138M. C. Angelini and G. Biroli, “Spin glass in a field: A new zero-temperature
fixed point in finite dimensions,” Phys. Rev. Lett. 114, 095701 (2015).
139P. Charbonneau and S. Yaida, “Nontrivial critical fixed point for replica-
symmetry-breaking transitions,” Phys. Rev. Lett. 118, 215701 (2017).
140M. Moore and B. Drossel, “p-spin model in finite dimensions and its relation
to structural glasses,” Phys. Rev. Lett. 89, 217202 (2002).
141J. Yeo and M. Moore, “Origin of the growing length scale in m-p-spin glass
models,” Phys. Rev. E 86, 052501 (2012).
142J. R. L. de Almeida and D. J. Thouless, “Stability of the Sherrington-Kirkpatrick
solution of a spin glass model,” J. Phys. A: Math. Gen. 11, 983–990 (1978).
143We here consider the Gardner transition obtained by compressing or anneal-
ing an amorphous solid, not the transition that could take place for the ideal
glass. The field theory of the latter differs slightly.145 Given that the main con-
clusions do not depend on this technicality and that the former is in any event
more experimentally relevant, we here neglect this subtle issue.
144M. Moore and A. J. Bray, “Disappearance of the de Almeida-Thouless line in
six dimensions,” Phys. Rev. B 83, 224408 (2011).
145P. Urbani and G. Biroli, “Gardner transition in finite dimensions,” Phys. Rev.
B 91, 100202 (2015).
146A. Bray and S. Roberts, “Renormalisation-group approach to the spin glass
transition in finite magnetic fields,” J. Phys. C: Solid State Phys. 13, 5405 (1980).
147P. Charbonneau, Y. Hu, A. Raju, J. P. Sethna, and S. Yaida, “Morphology of
renormalization-group flow for the de Almeida-Thouless–Gardner universality
class,” Phys. Rev. E 99, 022132 (2019).
148C. J. Fullerton and M. Moore, “The growing correlation length in glasses,”
e-print arXiv:1304.4420 (2013).

149S. Boettcher, “Low-temperature excitations of dilute lattice spin glasses,”
Europhys. Lett. 67, 453 (2004).
150V. Astuti, S. Franz, and G. Parisi, “New analysis of the free energy cost of
interfaces in spin glasses,” e-print arXiv:1810.13013 (2018).
151H. Yoshino, “Disorder-free spin glass transitions and jamming in exactly
solvable mean-field models,” SciPost Phys. 4, 040 (2018).
152M. Mezard and A. Montanari, Information, Physics, and Computation (Oxford
University Press, 2009).
153A. Biere, M. Heule, and H. van Maaren, Handbook of Satisfiability (IOS Press,
2009), Vol. 185.
154E. Gardner, “The space of interactions in neural network models,” J. Phys. A:
Math. Gen. 21, 257 (1988).
155E. Gardner and B. Derrida, “Optimal storage properties of neural network
models,” J. Phys. A: Math. Gen. 21, 271 (1988).
156M. Mézard and G. Parisi, “The Bethe lattice spin glass revisited,” Eur. Phys. J.
B 20, 217–233 (2001).
157G. Biroli, R. Monasson, and M. Weigt, “A variational description of the ground
state structure in random satisfiability problems,” Eur. Phys. J. B 14, 551–568
(2000).
158M. Mézard, G. Parisi, and R. Zecchina, “Analytic and algorithmic solution of
random satisfiability problems,” Science 297, 812–815 (2002).
159F. Krzakała, A. Pagnani, and M. Weigt, “Threshold values, stability analysis,
and high-q asymptotics for the coloring problem on random graphs,” Phys. Rev.
E 70, 046705 (2004).
160F. Krzakała, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, and L. Zde-
borová, “Gibbs states and the set of solutions of random constraint sat-
isfaction problems,” Proc. Natl. Acad. Sci. U. S. A. 104, 10318–10323
(2007).
161A. Montanari, G. Parisi, and F. Ricci-Tersenghi, “Instability of one-step
replica-symmetry-broken phase in satisfiability problems,” J. Phys. A: Math. Gen.
37, 2073 (2004).
162S. Franz and G. Parisi, “The simplest model of jamming,” J. Phys. A: Math.
Theor. 49, 145001 (2016).
163S. Franz, S. Hwang, and P. Urbani, “Jamming in multilayer supervised learning
models,” e-print arXiv:1809.09945 (2018).
164M. Geiger, S. Spigler, S. d’Ascoli, L. Sagun, M. Baity-Jesi, G. Biroli,
and M. Wyart, “The jamming transition as a paradigm to understand
the loss landscape of deep neural networks,” e-print arXiv:1809.09349
(2018).
165C. Brito, H. Ikeda, P. Urbani, M. Wyart, and F. Zamponi, “Universality of jam-
ming of nonspherical particles,” Proc. Natl. Acad. Sci. U. S. A. 115, 11736–11741
(2018).
166V. Lubchenko and P. G. Wolynes, “Aging, jamming, and the limits of stability
of amorphous solids,” J. Phys. Chem. B 122, 3280–3295 (2017).

J. Chem. Phys. 151, 010901 (2019); doi: 10.1063/1.5097175 151, 010901-14

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1103/physreve.95.022139
https://doi.org/10.1103/physreve.95.022139
https://doi.org/10.1103/physreve.99.020901
https://doi.org/10.1038/nphys3006
https://doi.org/10.1103/physrevb.93.094204
https://doi.org/10.1038/320340a0
https://doi.org/10.1126/science.1187988
https://doi.org/10.1051/anphys:2006003
https://doi.org/10.1103/physrevlett.109.095704
http://arxiv.org/abs/1902.00630
https://doi.org/10.1103/physrevlett.114.095701
https://doi.org/10.1103/physrevlett.118.215701
https://doi.org/10.1103/physrevlett.89.217202
https://doi.org/10.1103/physreve.86.052501
https://doi.org/10.1088/0305-4470/11/5/028
https://doi.org/10.1103/physrevb.83.224408
https://doi.org/10.1103/physrevb.91.100202
https://doi.org/10.1103/physrevb.91.100202
https://doi.org/10.1088/0022-3719/13/29/019
https://doi.org/10.1103/physreve.99.022132
http://arxiv.org/abs/1304.4420
https://doi.org/10.1209/epl/i2004-10082-0
http://arxiv.org/abs/1810.13013
https://doi.org/10.21468/scipostphys.4.6.040
https://doi.org/10.1088/0305-4470/21/1/030
https://doi.org/10.1088/0305-4470/21/1/030
https://doi.org/10.1088/0305-4470/21/1/031
https://doi.org/10.1007/pl00011099
https://doi.org/10.1007/pl00011099
https://doi.org/10.1007/s100510051065
https://doi.org/10.1126/science.1073287
https://doi.org/10.1103/physreve.70.046705
https://doi.org/10.1103/physreve.70.046705
https://doi.org/10.1073/pnas.0703685104
https://doi.org/10.1088/0305-4470/37/6/008
https://doi.org/10.1088/1751-8113/49/14/145001
https://doi.org/10.1088/1751-8113/49/14/145001
http://arxiv.org/abs/1809.09945
http://arxiv.org/abs/1809.09349
https://doi.org/10.1073/pnas.1812457115
https://doi.org/10.1021/acs.jpcb.7b09553

