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Jamming occurs when objects like grains are packed tightly
together (e.g. grain silos). It is highly cooperative and can lead to
phenomena like earthquakes, traffic jams, etc. In this paper we
point out the paramount importance of the underlying contact
network for jammed systems; the network must have one contact
in excess of isostaticity and a finite bulk modulus. Isostatic means
that the number of degrees of freedom is exactly balanced by the
number of constraints. This defines a large class of networks that
can be constructed without the necessity of packing particles
together compressively (either in the lab or computationally). One
such construction, which we explore here, involves setting up the
Delaunay triangulation of a Poisson disk sampling and then removing
edges to maximize the bulk modulus until the isostatic plus one edge
is reached. This construction works in any dimensions and here we
give results in 2D where we also show how such networks can be
transformed into disk packs.

1 Introduction

Amorphous materials are ubiquitous in nature, spanning
such disparate systems as granular media,’ foams,> colloidal
suspensions,® and glasses.” Two decades ago it was suggested
that the jamming transition unified all of these systems into a
common framework.®> Through this lens, one can see that many
amorphous materials share unusual mechanical and vibrational
properties at the transition from flowing to rigid, marked by the
vanishing ratio of the shear to bulk modulus® and the development
of an excess of low frequency vibrational modes about the Boson
peak.””® For most amorphous systems, the external control
parameter which controls this transition is the packing fraction
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or density of particles. However, recent results demonstrate that
density alone does not directly control the properties of the
transition." Instead, changes in density induce a change in the
underlying connectivity network and it is this underlying net-
work that determines the rigidity and related responses of any
given system.

Disordered packings of athermal frictionless particles are a
standard model for studying the jamming transition in amorphous
materials. Every jammed system has a corresponding elastic net-
work that renders the physical properties of the original system."*"!
Such networks are created by replacing the center of mass of each
particle with a vertex and adding a spring edge between two vertices
if their equivalent particles are in contact. The spring network is a
simple yet powerful model to study the mechanical and vibrational
properties of materials with dominant short range interactions
which is the case for the jammed systems. The spring network
model provides a linearized picture of the complex physical systems
and allows a full description of the mechanical response and rigidity
of the material structures in terms of their geometry.">"* The
mechanical response of a spring network to any external defor-
mation can be calculated by solving the set of linear equations
of motions for the vertices while taking into account the forces
applied on each vertex by the springs that are connected to it."*
The rigidity of a spring network, on the other hand, can
be studied by looking at the balance between its degrees of
freedom and constraints. In a d dimensional network with N
vertices, each vertex has d degrees of freedom. Therefore, the
total number of degrees of freedom is dN. Connecting any
pair of vertices with a spring imposes a constraint on their
rigid motions. A network is said to be minimally rigid or
isostatic when its total number of degrees of freedom (dN)
and constraints (N. that is the number of edges) are balanced
in a way that the number of floppy modes, F, are exactly zero.
The Maxwell count for an isostatic periodic network (meaning
that the network is repeated in all d directions to cover the
entire space) is given by:

F=dN—N.—d=0 1)
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with the dimension d = 2 in this paper. The last term is to make
sure that the d macroscopic translations are properly accounted
for. All the constraints are assumed to be independent. If a
network has any number of edges in excess of isostaticity, it is
said to be over-constrained.’

The network embedding of a jammed system created in
periodic boundary conditions has exactly one edge in excess of
isostaticity, meaning that there is only one state of self stress in
the system. A self stress is a state in which the edges are under
compression or tension while the net force on each vertex is
zero. This extra edge condition is necessary for the mechanical
stability and a finite bulk modulus.">'® We will refer to this as
isostatic plus one. We note that this is often referred to
confusingly as isostatic in the literature and we strongly dis-
courage this usage. These systems are delicately balanced and a
single edge present at isostatic plus one does make a global
difference at the isostatic point; no matter how large the system.

In this paper, we define a jammed network as being at
isostatic plus one excess contact'”'® and having a finite bulk
modulus. By finite we mean O(1) and not O(1/N) which will go
to zero as the number of vertices N tends to infinity. When one
edge is removed from such a network, the network becomes
isostatic everywhere, with no stressed edges. We refer to this as
locally isostatic.'"® This is a stricter requirement than just
applying eqn (1) once globally, as it requires that all subgraphs
are also isostatic. Clearly just applying eqn (1) globally could
give rise to subgraphs containing states of self stress that are
balanced by other regions containing floppy modes and hinges,
as happens when the edges are randomly removed from a
highly over-constrained spring network.>’

With this definition, we are now free to adopt any construction
method that will achieve this. There is the traditional method
which packs particles together by compression and a new method
described here. Other definitions of jammed systems are available
(see Theorem 1 in ref. 21) but we have found the above to be the
most useful in practice. Note that with the two main properties
in this definition, making jammed networks without packing
physical particles together is not a trivial process. Because as
stated above, building spring networks by adding edges randomly
to a distribution of vertices or removing edges randomly from a
network that is above isostaticity, does not necessarily result in a
network with exactly one state of self stress and a finite bulk
modulus of 0(1).*° It is important to note that for randomly
diluted spring networks at the transition point, the ratio of the
shear modulus to the bulk modulus is not zero but finite.”> In
order to achieve a zero value for the ratio of the shear to bulk
moduli, it is necessary to go beyond random dilution of network
models to introduce a global self-organization into the network
and methods to do this appropriately are introduced in this paper.

The goal of this paper is to point out the fundamental
importance of the two properties used in the new definition.
This is achieved by first showing that a special procedure is
required to build spring networks that hold these properties
and then by showing that networks with these properties dis-
play all the other physical properties of jammed networks. Most
work on jamming has focused on the compressive packing of
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objects like disks and spheres, while the jamming phenom-
enon is much more general. Therefore it is important to be able
to prepare jammed systems in different ways that avoid compressive
packing. This has some major benefits, perhaps of most importance
is it broadens our viewpoint as to which materials belong in the
class of jammed materials and why they should have similar
properties. It also explicitly highlights the role of geometry and
global self-organization which is not always so clear in the
compressed jammed packs.

2 A new approach to jamming

Traditional computational methods available to create jammed
packings, usually with disks or spheres, include some mixture
of molecular dynamics, event driven dynamics, and energy
minimization schemes."®***” The new method introduced
here, produces a jammed network with precisely one state of
self stress and expands the set of what was previously accepted
as jammed. The new approach uses an algorithm that allows
for precise control over the number of contacts in excess of
isostaticity.”®° We focus on the network as being fundamental to
the jammed state and show that in two dimensions, the network
can always be replaced by a disk pack, as well as vice versa.

For a non-crystalline system to be jammed it is necessary but
not sufficient for it to be isostatic plus one. An additional
degree of cooperativity needs to be introduced by demanding
that the bulk modulus drops from finite to zero as a single edge
is removed in going from isostatic plus one to the isostatic state.
A locally isostatic network can be easily achieved by randomly
removing stressed edges from a highly over-constrained net-
work, but the resulting network will not necessarily have a finite
bulk modulus at isostatic plus one.*® Therefore the finiteness of
bulk modulus does not follow from the system being locally
isostatic when an edge is removed. A convenient way to characterize
the extreme cooperativity of jammed networks is through two
indexes s and h, where s measures the fraction of stressed
edges, when any one additional edge is added to an isostatic
network, and & measures the fraction of hinged vertices when
any one edge is removed. This comes entirely from the static
properties, using a standard integer algorithm named pebble
game,”>*" and is a very convenient way to establish the marginality
of jammed networks without getting into the details of
low frequency dynamics®>** which is discussed in detail in
Section 5. If rattlers are removed, both locally isostatic and
jammed networks can have s = 1 and % = 1,°°** so this cannot
be used to distinguish between them. Hence we need to include
in the definition of jammed states that the bulk modulus is
finite at isostatic plus one.

The new method to generate polydisperse jammed packs at
zero temperature does not require exploring the entire energy
landscape to bring the system into zero internal energy and
isostaticity. Instead, it builds the system within a single local
energy minimum. We try to keep cavities to a minimum so all
packing fractions are within the range 0.77 < ¢ < 0.82 after
removing the rattlers.
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3 Computational method

This new method is based on a pruning algorithm that is used
to manipulate and control the elastic properties of disordered
harmonic spring networks.*> These disordered networks are
usually created by minimizing the energy of N repulsive friction-
less particles in a periodic box and stopping at a coordination that

is slightly above jamming transition point. Therefore they already
have encoded in them the properties of jamming and should not
be thought of as generic networks. By contrast, in this work we
generate the initial networks de novo and far from jamming, using
computational geometry only. The disordered jamming-like
networks are then created by performing a simple set of steps.
A summary of the procedure is presented below:

e We start by generating N points in a box with periodic
boundary conditions that are distributed by Poisson disk

sampling.>®~”

The Poisson sampling is used for aesthetic purposes

only and is not necessary for the process. We have confirmed that

the same results are obtained when a uniform distribution of

points is used.

e We then find the Delaunay triangulation of these points.*®
To make the triangles look more regular, we move each vertex
to the centroid of the polygon formed by its nearest neighbors,
iteratively, until every vertex is at the centroid of its neighbors.
This step, is again for aesthetic purposes and does not affect
the final results reported in this paper. An example of such
generated samples is shown in Fig. 1la. This geometrically
generated network is highly over-constrained and far from
isostatic (with a mean coordination of (z) = 2N./N = 6), therefore
we need to remove N, redundant edges to push it down to the

isostatic plus one point as desired.

e There are ( %e) ways to prune these N; redundant edges
T

from the network. It is well known®%*°

that the contribution of

a removed edge to the bulk modulus is largely independent of
its contribution to the shear modulus, although these moduli
cannot increase by removing an edge (ref. 41, pp. 110-111).
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Since jammed packs maintain a finite bulk modulus while the
ratio of shear (G) and bulk (K) moduli vanishes at jamming
point, at each step we find and remove the edge that maximizes
the bulk modulus of the remaining network. Maximizing the
bulk modulus is not strictly necessary as similar results can be
obtained if we remove an edge randomly from the top 20% of
edges that have minimal contribution to the changes in bulk
modulus.

e We repeat the process, until we arrive at isostatic plus one
where (z) ~ 4. The resulting network has a finite bulk modulus
and is shown in Fig. 1b. Fig. 2 shows how the bulk and shear
elastic moduli of the network change as the edges are pruned.
The behavior of the shear modulus is reminiscent of random
rigidity percolation models® as well as jamming.

4 Results

At this point we have a spring network that is identical to the
network representation of a jammed pack (an example is shown
in Fig. 1c) in all the following aspects (none of which holds for a
percolating rigid network at the marginal point):

(1) The network has one excess contact past mathematical
isostaticity (isostatic plus one),

(2) The bulk modulus of the network is finite and O(1),

(3) The ratio of shear and bulk elastic moduli (G/K) scales as
Az = (z) — z; where z; is the mean coordination at the
marginal point,

(4) It is marginal, as both its s and % indexes are equal to 1**
and there is an excess of low excitation vibrational modes in
their density of states similar to that of a jammed system as is
shown in Section 5.

(5) It is stable as revealed by the study of its dynamical
matrix. All of the eigenvalues are positive (except for the two
trivial translational eigenvectors whose eigenvalues are zero).

(6) 100% of the forces due to the single state of self stress in
the network are positive definite and their distribution looks

(DT

X
o\

©

Fig. 1 (a) Delaunay triangulation of a Poisson disk sampling with 512 points. (b) The same network at the isostatic plus one, after pruning edges that
minimally reduce the bulk modulus and removing the rattlers. (c) The network representation of a polydisperse jammed pack, formed by compressing
disks, with approximately same number of vertices as in part (b).
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Fig. 2 The ensemble averaged bulk K (red) and shear G (black) elastic
moduli of 100 samples with 512 vertices as the edges are removed from
mean coordination (z) = 6 down to (z) ~ 4. Both moduli are dimension-
less as all the spring constants are made equal and the moduli are
normalized so that K = 1 at (z) = 6. The yellow square, with a wide spread,
shows the average of bulk moduli for 100 samples generated by Circle-
Pack. The blue triangle, with a tighter spread, shows the average of bulk
moduli at isostatic plus one for 100 samples generated by conventional
jamming algorithms. The jammed systems have the same disk size
distribution as circle packings.

similar to the force distribution of jammed systems (see Section 6).
This is very different from randomly pruned networks at the critical
point where the fraction of compressive forces is about 50%.

The next step realizes this periodic network as a circle
packing on a geometric torus (alternately called a disk pack*?).
Our approach, in essence, replaces the interactions between
particles, which are represented by springs, by the interactions
between circles, which are based on well understood geometric
principles. The methods come from a topic called circle pack-
ing, which was introduced by William Thurston;**** the stan-
dard reference is ref. 45, see in particular Chapter 9, and the
computations are carried out in the software CirclePack."®

A “circle packing” is a configuration of circles (or disks)
which realizes a prescribed pattern of tangencies. In our models,
information about circles that are tangent to one another is
encoded in the given periodic network, which is treated as a
graph on a topological torus. Each particle, a vertex in the
network, will be represented by a circle, and if two particles
are connected by an edge in the network, then their circles
are required to be tangent in the associated circle packing.
Computations, however, require a graph which is a triangulation.
Generically, our networks will not be triangulations since we have
to prune one third of the edges from an original triangulation to
get to the isostatic plus one point. So, in any face bounded by four
or more edges, we temporarily introduce a single auxiliary vertex
connected to each of the network vertices defining that face. This
augmented network is a triangulation of a topological torus, and
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(®)

Fig. 3 (a) Packing generated by the pruning algorithm and CirclePack.
(b) Rattler free packing generated by standard algorithms.

circle packing theory (see ref. 47 and 45 [Prop 9.1]) guarantees the
existence of a geometric torus and an associated circle packing on
that torus. This is where CirclePack comes in: it first computes
the radii of all the circles, then using these and the pattern of
tangencies of the triangulation, it lays the circles out as a periodic
circle packing in the plane. The periodicity determines the
geometric torus on which the packing lives. Discarding the disks
for the auxiliary vertices leaves a circle packing with locations and
radii for the vertices of the original network, as in Fig. 3a.
There are two things to note about our computations. First,
theory guarantees that each computed circle packing is unique
up to scaling and rigid motions, that is, up to uniform scaling
of all radii and rotating or translating the configuration. However,
uniqueness depends on the method we have chosen for augmenting
the original network — namely, adding a single vertex in each
non-triangular cell. Other options to get triangulations will
result in alternative circle packings that satisfy the constraints
of the original network. With continued refinement of our
methods, one might find physically meaningful options for

Soft Matter, 2019, 15, 3076-3084 | 3079
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augmentation or one might add parameters available in more
advanced circle packing theory (see ref. 45 [Appendix E]).
Second, we point out that there are infinitely many distinct
geometric tori. Mathematically these are distinguished by what
is known as conformal structure (see, e.g. ref. 48); in practice,
they are distinguished by the periodicity of their layout in the
plane. CirclePack computations yield a unique geometric torus
for each of our circle packings (depending on triangulation as
noted above). In the absence of anisotropy, i.e., with materials
having no preferred directions, the geometries of the computed
torus do not appear to us to be physically pertinent.

CirclePack changes the geometrical configuration of vertices.
However, the connectivity of the system does not change and
the bulk modulus remains finite after this transformation with
a standard deviation of s = 0.09 for the samples studied here, as
can be seen in Fig. 2.

The generated circle packing holds all but one of the properties
of the pruned networks discussed above. It is at isostatic plus one,
has a finite bulk modulus of O(1) and a vanishingly small shear
modulus of O(1/N). It is also marginal with s = # = 1, and stable
which means it would not change for a small enough compress-
decompress protocol. The difference is that not all the forces due
to the single state of self stress in the system (although a majority
of 72% to 99% of them in the samples studied here) are necessarily
positive definite (item 6 above). This comes as a result of our
non-unique mapping from the network to the disk packing. A
visualization of this type of change in the state of self stress of a
network can be found in Section 6.

Every circle packing has a distribution of radii that can be
assigned to particles in a standard molecular dynamics simulation
to generate a polydisperse 2D disk packing that can be compared
to the packing generated by the newly introduced algorithm. In
this approach, we first scale the radii of particles to achieve a
starting packing fraction well above the jamming transition;
typically packing fraction ¢; ~ 0.85 for disks. Particles interact
through a standard contact harmonic potential. The system is
minimized to its inherent structure at this initial density using a
quad-precision GPU implementation of the FIRE algorithm.***°
Configurations at a desired excess number of contacts can be
achieved by exploiting the scaling of total energy U o (¢ — ¢))?,
where ¢; is the isostatic jamming density. The system is
successively brought to lower energies and thus lower numbers
of excess contacts by rescaling the radii and re-minimizing. The
rescalings are chosen to achieve approximately 10 steps per
decade of ¢ — ¢;. This process continues until the number of
excess contacts is reduced to the desired value. At each density
the number of excess contacts is calculated on the rigid core of
the system by first removing rattler particles lacking at least d + 1
non-cohemispheric contacts. The blue triangle in Fig. 2 shows the
average bulk modulus of 100 samples generated by this method.
The standard deviation is in order of s = 0.01, which is smaller
than the standard deviation obtained from results of CirclePack.

There are measurables that are not universal - like the
density, pair distribution function, etc. These vary widely for
conventional jammed packs as well as in the jammed systems
here, depending largely upon the number of rattlers, the size of
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convex cavities that are present, and the protocol that is being
used to generate the jammed packs. For instance, the average
packing fraction of 100 test samples generated by CirclePack is
¢ ~ 0.77 which is lower than that of samples generated by our
standard algorithm where ¢ ~ 0.82 after removing the rattlers.
We emphasize again that the circle packing construction used
here is not unique and does not create packings with all positive
definite forces. This then explains the lower density as it is well
known that attractive interactions (or indeed frictional interactions)
allow one to create critically jammed packings at significantly lower
densities.’® The precise ways the disks of various radii are
located is also not a crucial issue and can vary from well mixed
to some clustering. Fig. 3 shows the comparison of two samples
with 512 particles.

5 Comparison of the vibrational
modes

One of the most important features of disordered systems such
as glasses and jamming is the excess of low frequency phonon
modes in their density of vibrational states compared to
Debye’s prediction for crystalline solids (Boson peak).””® Here
we look into the density of states (DOS) in the pruned network
constructions and their equivalent circle packs and compare
the results to physically jammed systems. First, we study the
evolution of DOS in the disordered networks as they are pruned
from (z) = 6 to (z) ~ 4. For a 2D spring network of area 4,
the number of allowed wave modes between wave numbers 0
and q is:>"

n(q) :@Afymf @

We assume the vibrational frequencies are low enough for
the dispersion relation to be almost linear for both longitudinal
(L) and transverse (T) acoustic modes:

=— 3
9= (3)
where o = T, L. This means the number of vibrational modes
n(w) is quadratic in frequency which leads to the following form
for density of states:

dn(w) A
do 2mvy2 @ )

Z(w) =

On the other hand, the longitudinal and transverse sound
velocities are related to the bulk (K) and shear (G) moduli of a
2D spring network in the following form:

G+K
V=4 —
14
G
VT = —
p

where p = N/A is the mass density. Here the mass density is
equal to the number density of the system since all vertices

This journal is © The Royal Society of Chemistry 2019
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Fig. 4 The evolution of probability density function for acoustic modes in
disordered spring networks as the bonds are pruned from (z) = 6 down to
(z) =~ 4 (isostatic plus one) while keeping the bulk modulus finite. The
dashed lines display egn (6) for the average elastic moduli associated with
each value of (z) shown on the colored curves. The results are ensemble
averaged over 100 samples, each with 512 vertices.

have unit mass. By inserting eqn (5) into eqn (4) and using the
normalization gg(w) = Z(w)/N so that [gg(w)dw = 1, we can
write the probability distribution function of the vibrational
modes in terms of the elastic moduli of the system:*>

The linearity of g, (w) versus w is the Debye-like low frequency
behavior that is expected to be seen in any material with non-
zero values of sound velocities. This is observed for networks far
from marginality in the lower left corner of Fig. 4. When the
edges with smallest contribution to the bulk modulus are
removed from a fully triangulated disordered spring network,
the shear modulus approaches zero almost linearly, while the
bulk modulus remains finite. Therefore the first term on the
RHS of eqn (6) diverges and the density of states becomes
flat near the transition point which is a characteristic of the
vibrational modes in disordered systems at their marginal
transition point.'>%33

Fig. 5 shows the plots of g4(w) for three types of systems
studied here: the pruned networks at isostatic plus one, their
equivalent circle packings, and the jammed systems generated
by using the size distribution of circle packs both in linear
and logarithmic scale. The marginality of all these systems is
evident by their flat density of states at low frequencies.

6 Comparison of the force networks

In this section, we first display a visualization of the changes in
the state of self stress of a network before and after running

This journal is © The Royal Society of Chemistry 2019
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Fig. 5 (a) The probability density function for vibrational modes in 2D
pruned networks (blue), their equivalent circle packs (red) and jammed
systems (black) in linear scale. (b) The plot of part (a) in logarithmic scale.

CirclePack. Then, we show the distributions of the forces in our
studied systems. The transformation of the state of self stress in
a network is shown in Fig. 6, where the edges that carry a
positive definite force are colored in black and edges that carry
a negative force are shown in red (the width of each edge is
proportional to the magnitude of the force along that edge). As
can be seen from this figure, all the forces in a pruned network
are positive definite. Therefore, there are no red edges in the
image of panel Fig. 6a. It is only after running the CirclePack
that tensile forces appear. In Fig. 6b, only 6% of the forces are
negative. Note that these two networks have the exact same
connectivity and the reason they appear different is because the
CirclePack algorithm changes the positions of the vertices.
Fig. 7 shows the probability distribution of forces in the
single state of self stress at isostatic plus one for the pruned
networks, circle packings, and jammed systems. The logarithmic
plot in panel Fig. 7b shows this probability distribution for
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Fig. 6 (a) A network created by the pruning algorithm before running the
CirclePack. The edges with positive definite forces are colored black.
There are no edges with negative forces in this network. (b) The same
network after running the CirclePack, which leads to changes in the
positions of the vertices. The black edges represent contacts with positive
definite forces and the red edges show contacts that carry negative forces.
The widths of the lines are proportional to the magnitudes of the forces.

pruned networks and jamming only. While they look quite
similar on this scale, a plot of the cumulative distribution of
forces (Fig. 8) reveals an intriguing distinction. The physically
jammed packing has a low force scaling exponent for all forces
that is consistent with the mean field full-replica symmetry
breaking results,*® as is expected for a jamming transition that
happens deep within the marginal glass phase. However, the
pruned network has an exponent in the CDF consistent with 1,
which matches well with the single-replica symmetry breaking
result for stable glasses.’*

7 Discussion

In this paper, we have shown that the essence of the jamming
transition is the underlying network involved at the isostatic
plus one point. But another ingredient is required - that the
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Fig. 7 (a) The probability distribution function of forces for pruned networks,
circle packings, and jammed systems at isostatic plus one. (b) The force
probability distribution functions in a logarithmic scale for pruned networks
and jammed systems only. Both exhibit a nearly constant distribution of forces
for small forces.

bulk modulus goes from a finite value to zero as one constraint is
removed to take the network from isostatic plus one to isostatic.
This not only clarifies the nature of the jamming transition, but
shows that conventionally jammed networks (formed by com-
pacting particles together) are part of a larger group of networks
controlled by topology with the added cooperative geometric
ingredient that the bulk modulus remains finite. Such cooperativity
is essential to make the network jammed, and much more
restrictive than merely being isostatic. We have also demon-
strated that all of the interesting macroscopic properties of
jammed matter derive from the marginality of the system and
its bulk mechanical properties. As such, both our generated
networks and their equivalent circle packings behave as properly
jammed systems for all bulk interrogations. However, the micro-
scopic properties of jamming are only satisfied by the pruned
networks and not the circle packs. This is because the force

This journal is © The Royal Society of Chemistry 2019
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Fig. 8 The cumulative distribution function of forces for pruned networks
and jamming at isostatic plus one. Best fit power laws are over plotted in
red for the pruned networks and teal for the jammed systems.

distributions in pruned networks and jamming follow similar
scaling laws, whereas the circle packings fail to do so since forces
are not positive everywhere. We note finally that in all the networks
discussed in this paper, the shear modulus goes from O(1/N) at
isostatic plus one, to zero at isostatic. The ideas in this paper
generalize easily to any dimensions, but the final step of going
from a network to a hypersphere pack is only possible in 2D.
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