Supplemental Materials

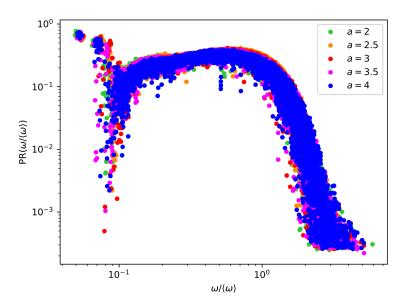


Figure 1. Participation ratio (PR) as a function of the gap distance cutoff h_{cut} for the logarithmic potential for a typical sample. Curves are plotted for $h_{cut} = ah_{peak}$ with a ranging from 2 to 4, where h_{peak} is the size of the gap at the first peak of the gap distribution. Samples are obtained by compressing the same initial packing of N = 8192 particles in d = 3 from a starting packing fraction of $\varphi = 0.55$. Data are plotted for $\varphi = 0.65722$. The PR does not show any significant difference as the cutoff distance changes over the full frequency range.

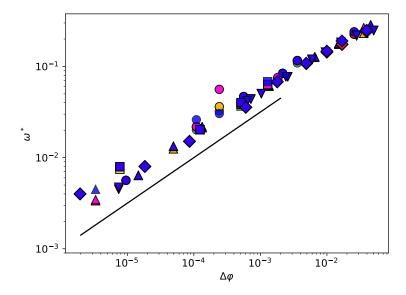


Figure 2. Dependence of ω^* on PR_c, the cutoff threshold for the participation ratio, PR_c = 0.2 (green), 0.18 (yellow), 0.15 (orange), 0.12 (red), 0.1 (magenta), 0.08 (blue). The curves are plotted for different system sizes from decompressions (squares N=4096) and compressions (circles N=1024, upward triangles N=2048, downward triangles N=4096, diamonds N=8192). The scaling relation between ω^* and $\Delta\varphi$ is not affected by the choice of PR_c for $8\times10^{-2}<{\rm PR_c}<2\times10^{-1}$, values which correspond to 8% and 20% participating particles respectively.