
 

Vibrational Properties of Hard and Soft Spheres Are Unified at Jamming

Francesco Arceri * and Eric I. Corwin
Department of Physics, University of Oregon, Eugene, Oregon 97403, USA

(Received 16 December 2019; accepted 23 April 2020; published 11 June 2020)

The unconventional thermal properties of jammed amorphous solids are directly related to their density of
vibrational states. While the vibrational spectrum of jammed soft sphere solids has been fully described, the
vibrational spectrum of hard spheres, a model glass former often related to physical colloidal glasses, is still
unknown due to the difficulty of treating the nonanalytic interaction potential.We bypass this difficulty using
the recently described effective interaction potential for the free energy of thermal hard spheres. By
minimizing this effective free energy, we mimic the rapid compression of hard spheres and produce typical
configurations of the thermal system. We measure the resulting vibrational spectrum and characterize its
evolution toward the jamming point where configurations of hard and soft spheres are trivially unified. For
densities approaching jamming from below, we observe low-frequencymodes which agreewith those found
in numerical simulations of jammed soft spheres. Our measurements of the vibrational structure demonstrate
that the jamming universality extends away from jamming: hard sphere thermal systems below jamming
exhibit the same vibrational spectra as thermal and athermal soft sphere systems above the transition.
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Introduction.—Glasses and granular materials are uni-
fied by their expression of amorphous rigidity. Seen from
the perspective of granular systems, described as soft
sphere packings, jamming marks the onset of rigidity
and occurs at zero pressure, when every particle becomes
fully constrained but all contacts are just kissing [1]. By
contrast in hard sphere glasses, considered as shadow
systems for colloidal glasses [2], rigidity is achieved at
the dynamical glass transition [3,4] and the jamming point
is only reached at infinite pressure when all the particles are
forced to come into enduring kissing contact with one
another [5]. As such, the jamming point is a matching point
for the two systems, where hard sphere glasses end and soft
sphere rigid solids begin. Even though the configurations
found in each limiting case must be valid configurations for
the other, there is no a priori reason to expect that the
properties of such configurations should bear any mean-
ingful relation due to their very different origins and
interactions. Although the criticality of jamming has been
explored from both hard and soft sphere perspectives [6–8],
whether the jamming point represents a smooth crossover
between hard and soft spheres or a singular point is still an
open question. In this work, we demonstrate that the
vibrational properties of both hard and soft sphere systems
approach the jamming transition point in the same manner
and show no discontinuity between behavior below and
above jamming. We use an effective potential to bring
packings of hard spheres to their free energy minima,
allowing us to quench toward jamming without the lim-
itations of conventional thermal simulations and to directly
measure the vibrational spectrum from the dynamical
matrix.

Amorphous solids exhibit vibrational properties very
different from those predicted by Debye theory [9–11]. The
replica mean field theory of glasses and jamming predicts
the low-frequency scaling of the vibrational density of
states (VDOS) to behave asDðωÞ ∼ ω2 for systems in every
spatial dimension [12–15]. This non-Debye scaling has
been observed numerically in systems of soft spheres right
above the jamming point [16] and is the result of an excess
of vibrational modes within this low-frequency range.
These excess modes are spatially extended but nonpho-
nonic and give rise to a peak in the heat capacity of glasses,
often called the boson peak [17–19]. The VDOS associated
with these modes is nearly flat for low frequencies ranging
down to a crossover frequency ω� below which it decays to
zero [20]. At jamming, even an infinitesimal excitation

FIG. 1. Minimization of the effective logarithmic potential in
d ¼ 2 with packing fraction φ ¼ 0.55. Left: packing after
harmonic minimization. Right: final configuration of the same
packing after the logarithmic potential minimization.
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leads to an extended motion and the VDOS is flat until
ω� ¼ 0 [21].
In contrast to the mean field picture, as low-dimensional

soft sphere systems are brought to densities above jam-
ming, an additional class of modes appears as quasilocal-
ized modes which are hybridized between system spanning
phonons and local rearrangements [22]. These modes are
believed to control the elastic response to externally applied
shears [23,24] and are measured to follow a low-frequency
scaling of DlocðωÞ ∼ ω4 [25–28]. Such a scaling result
has been observed for a wide variety of disordered
systems [29–31]. These quasilocalized modes do not
appear in the mean field picture as they are exclusively
a low-dimensional phenomenon [32].
Similar quasilocalized modes play a central role in the

physics of real low-temperature glasses [33,34]. They are
described as soft excitations that connect two local minima
of the free energy, a scenario introduced by Phillips in the
two-level tunneling model [35,36]. These modes can be
derived from anharmonic effects which are directly
related to the nonanalytic form of the hard sphere potential
[34,37–39]. Anharmonic effects independently arise from
perturbation theory of hard spheres near jamming [15,40],
where the free energy has been found to be well approxi-
mated by a logarithmic effective pair potential [41] and
higher order corrections to this behavior are unnecessary
even at a finite distance to the jamming point [42].
The same effective interaction has also been shown in
simulations of thermal hard spheres under very high
pressure [43] for which an effective medium theory has
been developed [44].
In the limit of high pressure thermal hard spheres, this

effective logarithmic potential can be understood as deriv-
ing from entropic consideration. If the typical timescale
between collisions is much smaller than the typical time-
scale for relaxational rearrangements, then the time average
of the momenta exchanged between frequently colliding
particles is inversely proportional to the gap h between
those particles [43]. This coarse graining over time defines
a network of effective forces between hard spheres with
corresponding potential energy given by a sum of two-body
logarithmic potentials of the form

VðhÞ ¼ −kBT logðhÞ: ð1Þ

Thermal hard spheres near jamming can thus be directly
mapped to a collection of athermal particles interacting via
the logarithmic effective potential.
While the mean field theory predicts the same vibrational

properties for hard spheres below jamming and soft spheres
above jamming, in low-dimensional systems the vibrational
spectra could be very dissimilar due to the very different
circumstances giving rise to quasilocalized modes. In this
Letter, we present a protocol to produce stable glassy
configurations based on the minimization of the effective

free energy potential for a packing of athermal hard
spheres. By measuring the evolution of the vibrational
spectrum approaching jamming, we show that the spectrum
of jammed solids is unified when crossing the transition
between the hard and the soft sphere descriptions. This
result demonstrates that mechanical and thermal properties
of jammed solids arise purely from a geometric origin.
Numerical methods.—Hard sphere packings are pro-

duced using the pyCudaPacking package, developed by
Corwin et al. [7,45]. The packing is a collection of N
particles in d ¼ 2, 3 spatial dimensions, with a log-normal
distribution of particle sizes chosen to avoid crystallization.
The packing is inside a box of unit volume with periodic
boundary conditions and characterized by the packing
fraction φ, the fraction of the box volume occupied by
particles.
Starting from a packing fraction well below jamming we

randomly distribute particles and minimize energy using a
harmonic interaction potential (the same as used in the
context of soft spheres [46]) to eliminate any overlap
between particles. The logarithmic potential is then applied
as a pair potential between particles separated by less than a
cutoff gap distance. This cutoff is chosen to be twice the
value of the position of the first peak of the gap distribution
to allow for nearest neighbor interactions and exclude the
nonphysical next nearest neighbor interactions. However,
all the results reported herein are insensitive to this choice
as long as the cutoff encompasses nearest neighbors; see
the Supplemental Material [47]. We then minimize the
potential using the FIRE (Fast Inertial Relaxation Engine)
algorithm [48].

FIG. 2. Gap distribution of hard sphere packings in d ¼ 3. The
distance from jamming increases from left to right: data from
decompressions (blue squares) Δφ ¼ 1.1 × 10−7; 1.3 × 10−6;
1.5 × 10−5, data from compressions (green diamonds) Δφ ¼
2.3×10−5;2.1×10−4;3×10−3;2×10−2. The distributions peak
around the value of the typical nearest neighbor gap and then
decay following a power-law scaling (black line) consistent
with the mean field prediction h−γ with γ ¼ 0.41296… [5]. Gaps
are cutoff at h ¼ 1 to avoid showing next nearest neighbor
behavior.
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The result of the minimization of the logarithmic
potential is depicted in Fig. 1. From an initial packing
characterized by a broad distribution of nearest neighbor
gaps, the system reaches a configuration where the nearest
neighbor gaps are more uniform. This resulting packing is
compatible with the time-averaged limit of a thermal hard
sphere system, where collisions push particles as far as
possible from their neighbors on average [43]. If φ is less
than the jamming packing fraction φJ, then no particles are
in contact after the minimization and a void region can be
found around each particle. We exploit this to creep up in
density by inflating particles until saturating 10% of the
minimum gap and then minimizing the effective potential
for this new packing fraction. Repeating this procedure
iteratively, we are able to push the system to a distance from
jamming Δφ ¼ jφJ − φj of the order of 10−6. To produce
packings at densities significantly closer to jamming, we
decompress critically jammed soft sphere configurations
and then minimize the logarithmic potential [7]. By slightly
decompressing these packings, we maintain the same
spatial structure of the jammed systems, with a precise
tuning of the distance from jamming Δφ.
Figure 2 shows the gap distribution from both compres-

sions and decompressions exhibiting the same behavior.
We find a power-law scaling of the gap distribution that is
well described by the mean field scaling law h−γ [5] and has
previously been measured for soft spheres precisely at
jamming [7]. The systems created by decompression from
jamming show a sharper peak for the nearest gaps than is
found in systems created through compression, even when
both systems are at nearly the same distance from the
jamming transition. This reflects the underlying property
that systems created from jammed soft spheres will main-
tain a memory of their kissing contacts, while those
compressed from below have not yet chosen a single set
of incipient contacts and thus have a broader distribution.
Nevertheless, for every protocol, the distribution of nearest
gaps tends to a delta function upon approach to the
jamming point as the nearest neighbors become contacts.
Vibrational spectrum analysis.—In order to distinguish

extended and localized modes, we compute the participa-
tion ratio (PR) of each mode, a measure of the fraction of
particles that are participating in the motion governed by
the mode. Given a mode at frequency ω with eigenvectors
fuiðωÞg, where ui is the displacement vector for particle i,
we define the PR as

PRðωÞ ¼ 1

Ns

½PNs
i juiðωÞj2�2

PNs
i juiðωÞj4

; ð2Þ

whereNs is the number of stable particles, i.e., those with at
least z ¼ dþ 1 force bearing neighbors [49]. A mode
that corresponds to a totally extensive motion in which
every particle participates equally will be characterized by

PR ¼ 1, whereas a mode completely localized to a single
particle will have PR ¼ 1=Ns [16,22].
The vibrational spectrum for both two- and three-

dimensional packings produced by minimization of the
logarithmic potential can be divided into four different
ranges of frequency as illustrated in Fig. 3(a), ranging from
lowest to highest frequency: (1) at lowest frequencies, the
modes separate into discrete phonon bands with PR ≃ 2=3
as expected for plane waves [22,28] (blue region). (2) For
frequencies close to ω�, we find quasilocalized modes

(a)

(b)

FIG. 3. (a) Participation ratio (PR) and vibrational density
of states for a packing of N ¼ 8192 particles in d ¼ 3 at
Δφ ¼ 3 × 10−2. (b) Real space representation of the eigenvectors
for a packing of N ¼ 8192 particles in d ¼ 2 with distance from
jamming Δφ ¼ 3 × 10−2. Left: phonon with characteristic plane
wave modulation. Center: quasilocalized mode with localized
excitations distributed over the whole system. Right: extended
anomalous mode which correlates a large portion of the system
with random excitations.
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which show a splitting in the PR and a power-law decay in
the density of states (green region). (3) For higher frequen-
cies, modes become increasingly delocalized as indicated
by a very high PR. This region corresponds to extended
anomalous modes as evidenced by a nearly flat density of
states (red region). (4) At highest frequencies, modes are
strongly localized as a result of Anderson localization in a
random medium and have a density of states that decays
rapidly with increasing frequency [26].
We analyze the diverse nature of the vibrational modes

by looking at the real space representation of their
eigenvectors shown in Fig. 3(b). Phonons (left) have a
typical plane wave modulation which spans the system.
Quasilocalized modes (center), with frequencies near ω�,
present a number of localized distortions and vortices
hybridized with those phonons at nearby frequencies.
Extended anomalous modes (right) contain random seem-
ing excitations spread throughout the entire system.
As shown in Fig. 4, systems in two and three dimensions

differ significantly within the quasilocalized frequency
range as evidenced both in the PR and the VDOS.
Three-dimensional systems have a greater fraction of
modes with strong localization than in two-dimensional
systems. This difference manifests in the functional form of

the decay of the VDOS. For d ¼ 3, the density of
quasilocalized modes dominates over that of extended
modes as evidenced by a decay that follows the ω4 law.
For d ¼ 2 instead, a continuous crossover between pho-
nons and extended modes dominates this region of the
spectrum with a decay of the density that goes as ω2. These
results for hard sphere systems below jamming agree with
previous observations for soft spheres above the jamming
threshold [22].
Criticality near jamming.—Figure 4 shows the evolution

of the density of states and the participation ratio for
systems in both d ¼ 2 and d ¼ 3 at a broad range of
distances from jamming. As jamming is approached,
quasilocalized modes move toward lower frequencies
and hybridize with the existing phonons as local excitations
get softer [29]. For a range of densities sufficiently far from
jamming, quasilocalized modes coexist with phonons.
For Δφ≲ 10−4, extended modes dominate the vibrational
spectrum. Localized excitations disappear due to the
increasing stability of the packing from the compression,
a property which translates into a reduction of the number
of soft spots from which localized excitations originate
[29]. We observe that for Δφ≲ 10−5 localized distortions
are suppressed for both spatial dimensions as the extended
mode plateau reaches down toward ω ¼ 0. We observe that
in d ¼ 3 the low-frequency scaling of the VDOS deviates
from the ω4 law while in d ¼ 2 the ω2 scaling holds for
every step of the compression.
We measure ω� as the frequency of the last extended

mode above a cutoff in participation ratio, PRc ¼ 8 × 10−2.
As shown in the Supplemental Material [47], the results are
insensitive to the choice of PRc for 8 × 10−2 < PRc <
2 × 10−1. The relationship of ω� on Δφ is reported in
Fig. 5. The resulting scaling law is consistent with that

FIG. 4. Evolution of participation ratio (PR) and vibrational
density of states along the compression as a function of Δφ in
d ¼ 2 (left) and d ¼ 3 (right). Data from compressions are shown
in green and that from decompressions in d ¼ 3 in blue. Each
scatter plot of PR shows data from 10 samples while the density
of state curves are averaged over the same number of samples.
The distance from jamming increases from left to right. In d ¼ 3

Δφ ¼ 1.1 × 10−7, Δφ ¼ 2.3 × 10−5; 5 × 10−4; 3 × 10−2. In
d ¼ 2 Δφ ¼ 2.7 × 10−6; 3 × 10−4; 3 × 10−2. The low-frequency
decay of the density of states in d ¼ 2 follows ω2 for every value
ofΔφ, while in d ¼ 3 it follows ω4 sufficiently far from jamming.

FIG. 5. Scaling of ω� as a function of Δφ for different system
sizes from decompressions (blue squares N ¼ 4096) and com-
pressions (green circles N ¼ 1024, upward triangles N ¼ 2048,
downward triangles N ¼ 4096, diamonds N ¼ 8192). Data are
consistent with the critical scaling ω� ∼ Δφ1=2 observed for soft
spheres.
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already found in the jamming critical region for harmonic
soft spheres [6].
Conclusions.—By minimizing the logarithmic effective

potential, we are able to track the structural features from
which the mechanical properties of hard sphere glasses
originate, both below jamming and at the transition. We have
exploited the analytic effective potential to implement a
deterministic minimization algorithm and to compute the
vibrational properties of hard sphere glasses, something
which previously was accessible only from the velocity
autocorrelation function in thermal simulations [34]. The
vibrational modes found below and at jamming using this
effective potential quantitatively agree with those observed
in soft sphere systems above the transition. Thus, we have
demonstrated that granular systems and the shadow systems
of colloidal glasses have the same vibrational properties at
jamming and approaching the transition. Further, the scaling
of ω� confirms that the jamming criticality is universal from
both the hard and the soft sides of the transition: thermal hard
spheres under very high pressure (or their athermal mapping
in this case) have the same criticality as a packing of
harmonic soft spheres brought close to zero pressure.
This work suggests several paths forward for studying

hard sphere glassy systems using the tools developed for
athermal soft sphere systems. First, it would be useful to
apply these techniques to develop a more detailed charac-
terization of the size distribution of soft spots in higher
dimension, for which existing methods in identifying
quasilocalized modes are not sufficient. Further develop-
ment of real-space characterizations of these modes will
allow for investigations of spatial correlations of quasilo-
calized modes and how the associated length scale evolves
toward jamming. Another future direction will be to
minimize the logarithmic potential in a previously equili-
brated hard sphere glass [8]. By doing so, it will be possible
to isolate structural features from thermal noise and study
mechanical and rheological properties directly related to
the real space glassy structure.
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