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The free energy landscape of mean-field marginal glasses is ultrametric. We demonstrate that this feature
persists in finite three-dimensional systems that are out of equilibrium by finding sets of minima, which are
nearby in configuration space. By calculating the distance between these nearby minima, we produce a
small region of the distance metric. This metric exhibits a clear hierarchical structure and shows the
signature of an ultrametric space. That such a hierarchy exists for the jamming energy landscape provides
direct evidence for the existence of a marginal phase along the zero temperature jamming line.
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The energy landscape surrounding a crystalline material
clearly reflects the underlying crystal symmetries. Likewise,
the energy landscape surrounding an amorphous material
must reflect the replica symmetries underlying amorphous
systems. The replica theory of glasses has shown that, in the
mean-field limit, amorphous systems can exist in the liquid,
stable glass, or marginal Gardner phase [1–8]. The energy
landscape of the liquid phase is a single smooth basin,
reflecting the unbroken replica symmetry of an ergodic
phase. In the stable glass phase, this replica symmetry is
broken and the landscape consists of many smooth basins
separated by energy barriers [7]. However, within any
individual basin, replica symmetry is still present. In the
marginal Gardner phase, the replica symmetry is infinitely
broken as each sub-basin is itself broken up into many sub-
basins ad infinitum [4,6,9–14]. In the mean-field framework,
jamming is predicted to lie within the marginal Gardner
phase [10–12,14,15]. Indirect evidence for this phase in
thermal systems has been observed in numerical simulations
[16–22], in two-dimensional pseudothermal granular sys-
tems [23], and in thermal colloidal systems [24]. The mean-
field result is applicable to low-dimensional systems as
evidenced by a recent result, demonstrating through thermal
exploration that the free energy landscape of quenched soft
spheres has a hierarchical structure [22]. Similarly, the free
energy landscape of thermal disks at low temperatures has
been observed to be hierarchical [21]. However, it is
unknown how well this theory relates to physically relevant
three-dimensional athermal jammed packings [25–28] for
which not only are dynamics absent, but the system need
not be created by an equilibrium process, and for which all
behavior is solely determined by geometry. In this Letter, we
directly measure the Gardner phase in overjammed systems
by constructing the distance metric between nearby minima
and characterizing its hierarchy and ultrametricity. We find
that, for a range of pressures, jammed systems are both
hierarchical and ultrametric.

As illustrated in Fig. 1, the single replica symmetry
breaking (1RSB) solution reflects the fact that a stable glass
phase is characterized by distinct, infinitely long-lived
energy basins. The solution with infinitely many distinct
basins within basins, representing the marginal Gardner
phase, is called the full-RSB solution [1,5,29]. The hier-
archical structure of a marginal Gardner phase results in
minima forming a treelike structure in phase space for
which minima within a given sub-basin will all be much
closer to one another than they will be to minima within any
other sub-basin [3]. This feature is codified by the ultra-
metric inequality [30,31], which states that the distance d
between any three configurations a, b, and c must satisfy

dða; cÞ ≤ max ½dða; bÞ; dðb; cÞ�: ð1Þ

We construct jammed packings of N monodisperse soft
spheres interacting through a harmonic contact potential in
three dimensions using the FIRE algorithm [32] as imple-
mented by the pyCudaPacking software [28,33,34]. In order to
unambiguously distinguish nearby minima in the energy
landscape, all calculations are done with quad precision
floating point numbers and minimization is only halted once
the maximum unbalanced force on any particle is less than
10−20 in natural units. Systems are created in a cube of side
length 1 with periodic boundary conditions and at a large
initial packing fraction ϕ ¼ 0.8. These packings are then
brought to a specified pressure [35] through an iterative
process exploiting the known scaling between packing
fraction and pressure for overjammed systems [36].
In sufficiently small systems (N ∼ 10 in two dimen-

sions), one can sample the entire energy landscape,
enumerate all minima, and use these minima to construct
the metric for the landscape [37,38]. However, this quickly
becomes intractable as the number of minima increases
exponentially with increasing N. Choosing energy minima
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at random results in a small uncorrelated sample, which
will trivially not reveal any hierarchical structure as it is
extraordinarily unlikely that two minima will be a part of
the same deep sub-basin [39,40]. Instead, we search for
correlated samples with a small number of minima that are
close together in configuration space and thus have the
power to reveal any existing hierarchy.
To explore behavior as a function of distance to jamming,

we create initial systems at logarithmically spaced pressures
p, running from 10−1 down to 10−5.5 in natural units. Given
a system at a specified pressure, we explore the nearby
minima that characterize the local energy landscape by
repeatedly perturbing the initial conditions of the original
minimum and reminimizing. Each perturbation is chosen
randomly from a Gaussian distribution and amounts to
moving each particle a random distance in a random
direction. Because of the random nature of the perturbation,
there will be a small component of global particle translation.
To remove this, we subtract off the global translation when
calculating ε, the magnitude of the perturbation. Further, this
magnitude is normalized by the typical interparticle spacing

N−1=3 to remove the trivial dependence on the number of
particles in the system in a way that is independent of the
system’s packing fraction.
Depending on the initial pressure, many to most nearby

perturbed systems will return to the original configuration.
To adequately sample the nearby landscape, we continue
to perturb the original minimum until we have found 500
distinct minima (with the exception of data presented later,
for which 5000 minima were found).
Finding the metric for nearby minima using the pertur-

bation technique requires choosing a length scale for the
perturbation. A perturbation that is too small will frequently
lead back to the original minimum. A perturbation that is
too large will result in minima that do not fall within the
same top-level superbasin and are not sufficiently nearby in
configuration space to properly probe the hierarchical
structure of the landscape. Because the configuration space
is Nd-dimensional, sampling a small spherical volume of
the space biases points to the surface of the sphere. Instead,
to better sample nearby minima, the length of the pertur-
bation ε is chosen from a uniform distribution between zero
and εmax.
Figure 2 shows the magnitude of the initial perturbation,

scaled by
ffiffiffiffi
N

p
, plotted against the resulting normalized

distances between the original system and the minimized
perturbed system. A scaled distance of one means that the
number of stable contacts that differ between two systems
is comparable to the number of stable contacts present
within each system. Systems that are greater than this
distance bear no more structural relationship and are thus
in different top-level basins, making this a natural cutoff
for exploring the hierarchical structure of the local energy
landscape. The relationship between distance and initial
perturbation becomes sharper with increasing N and does
not depend strongly on pressure. Exploiting this empirical
relationship, we set εmax ¼ 0.4

ffiffiffiffi
N

p
.

Given a set of nearby minima, we construct the metric d
by calculating the distance between every pair of minima.
To avoid the ambiguity introduced by rattlers and by global
drifts, we define the distance based on the stable contact
vector network within each system. The stable contact
vector between particle i and particle j for configuration a
is denoted as C⃗ij

a . If two particles are not in contact, the
contact vector between them is taken to be 0⃗. The distance
between two systems a and b is

dða; bÞ≡ 1

hσi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ij

ðC⃗ij
a − C⃗ij

b Þ2
s

; ð2Þ

where σ is the diameter of a particle. This metric has the
convenient property that dða; bÞ will be approximately
equal to the square root of the number of contacts that differ
between the two minima for dða; bÞ < ffiffiffiffi

N
p

.

FIG. 1. (Above) Two-dimensional schematic illustrations of the
energy landscape present in the stable (1RSB) and marginal
Gardner (full-RSB) phases (Below) Their respective metrics. The
ij entry in the metric describes the distance between minimum i
and minimum j. The stable system has two levels of distinct
infinitely long-lived free energy basins, shown as the set of circles
contained within a larger circle. The metric for the stable phase
likewise reflects this hierarchy, shown schematically below. In the
marginal Gardner system, every sub-basin has sub-basins form-
ing a fractal energy landscape. The metric for such a landscape
reflects marginality and is shown schematically below. Note that
we depict each basin as having the same number of sub-basins,
but marginal systems do not generally have this feature.
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For any set of elements with a metric, one can construct a
new ultrametric by changing the pairwise distances. There
exists a family of ultrametrics for which every distance is
smaller than that found in the original metric. Of these, the
ultrametric that is closest to the original metric is called the
subdominant ultrametric d< and can be constructed from
the original metric using a minimum spanning tree [41,42],
as detailed in the Supplemental Material [43]. We charac-
terize the generalized distance between the subdominant
ultrametric and the original metric as

D≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdða; bÞ − d<ða; bÞÞ2i

q
; ð3Þ

where the angle brackets denote an average taken over
every pair of a and b. D ¼ 0 indicates a precisely ultra-
metric system.
Development of hierarchy upon minimization.—Figure 3

shows the evolution of the metric between distinct nearby
minima of N ¼ 4096 particles as a function of iterations
of the minimization protocol. These 500 minima are all
initially created by the above perturbation process around an
arbitrarily chosen initial minimum. The simple nature of this
random perturbation is revealed in the first panel, which
shows every system is initially nearly equidistant (shown in
black and dark green). After 100 iterations (second panel) of
minimization, the structure of a basin (shown in black and
blue) begins to appear as some systems relax toward the
initial minimum by reforming contacts; meanwhile, others
relax away by forming different contacts and fall into distinct
superbasins (shown in lighter green). After 1000 iterations
(third panel), the hierarchical structure begins to appear but
only becomes fully realized once systems are fully mini-
mized (final panel). Themetrics are all sorted using the single
link clustering algorithm [44] on the subdominant ultrametric
of the fully minimized systems.

FIG. 2. Two-dimensional histograms of the distribution of
normalized metric distance to the original packing as a
function of the size of the perturbation. The original packing
is perturbed by a Gaussian random vector with length ε and
then minimized. The distance between the original minimum
and this newly discovered minimum dða; bÞ is found. This
distance is normalized by

ffiffiffiffiffiffiffiffiffiffiffijajjbjp
, where the absolute value

of a system jaj is defined as dða; 0Þ and 0 is the contact
network containing all zeros. From the top, plots for packings
with 64, 256, 1024, and 4096 particles at pressure p ¼ 10−3.
We see that these curves all take a similar functional form
and have a normalized metric distance of about 1 at 0.4

ffiffiffiffi
N

p
,

which is thus a natural value for εmax.

FIG. 3. Evolution of hierarchy with minimization. 500 configurations with N ¼ 4096 are prepared by perturbing a random minimum
at a pressure 10−3. The metric distance between every pair of configurations, as given in Eq. (2), is shown for 0, 100, and 1000
minimization iterations as well as for fully minimized systems. The color scale reflects the metric distance and is labeled by square
rooted numbers, reflecting the fact that the metric distance is roughly the square root of the number of changed contacts between two
systems for dða; bÞ < ffiffiffiffi

N
p

.
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The hierarchical structure at different pressures.—We
plot the metric and corresponding subdominant ultrametric
for minima of N ¼ 4096 particles far from jamming,
p ¼ 10−1, and those closer to jamming, p ¼ 10−4, in
Fig. 4. These metrics are each constructed from 5000
distinct nearby minima. As jamming is approached, we
observe the metric to become more similar to the sub-
dominant ultrametric and we see that ever fewer minima fall
into the same sub-basins. Visually, systems at a low pressure

have a metric that is closer to the subdominant ultrametric
than do those at high pressure. This can be observed in the
quality of the color scale matching and the sharpness of the
boxes corresponding to sub-basins. For the high-pressure
metric, three-fifths of all systems differ from one another by
less than one contact per particle, whereas at low pressure
about two-fifths of the systems differ by less than this
amount. Once perturbed, the positions of particles for low-
pressure systems do not need to change as much before
finding a new minimum. As the pressure is decreased, the
number of nearby minima explodes, leading to a shrinking of
the region that can be densely sampled. Both of these results
arise from the increasingly rough and hierarchical energy
landscape upon the approach to jamming.
We quantify the qualitative result of increasing ultra-

metricity with decreasing pressure in Fig. 5 by plottingD as
a function of scaled pressure N2p, which can be interpreted
as the distance to jamming [45]. We see that for all system
sizes D collapses onto a master curve, which achieves a
plateau value of about 2.7 as N2p goes to zero. This means
that, on average, the distance between any pair of minima
will be bigger than the distance needed for ultrametricity
by about 2.7. However, the distance between any pair of
minima itself scales with

ffiffiffiffi
N

p
so this fractional excess of

distance will tend to zero as N becomes large. Therefore, in
the thermodynamic limit, the metric becomes precisely
ultrametric for all of the pressures explored.
Conclusions.—The structure of the distance metric

between minima provides the first evidence that the energy
landscape of overjammed three-dimensional configurations
becomes hierarchical and ultrametric in the thermodynamic

FIG. 4. Metrics (top) and corresponding subdominant ultrametrics (bottom) as a function of pressure constructed from 5000 systems
with N ¼ 4096 particles. Next to each metric and ultrametric is an enlargement of the region for which the subdominant ultrametric
distance is less than

ffiffiffiffiffiffiffiffiffiffi
4096

p
, which amounts to approximately one contact per particle. Contours of the subdominant ultrametric are

overlayed to highlight the hierarchy and their values are shown on the color bar. The color scheme is the same as in Fig. 3.

FIG. 5. The generalized distance between the subdominant
ultrametric and the original metricD as a function of pressure and
system size. The number of systems over which each point is
averaged is chosen such that the standard error bars fall below a
threshold. Systems of different sizes fall on a master curve.
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limit for all pressures sampled. In this limit, the marginal
Gardner phase arises as strictly a consequence of geometry
with no recourse to thermal fluctuations. It is far from clear
that this hierarchy and ultrametricity arises for such low-
dimensional configurations, especially with finite numbers
of particles. This result points to the universality of the
marginal Gardner phase within amorphous materials, as it
has now been measured within athermal materials in
addition to the already known thermal [21,22] and
mean-field limits [2]. By exploring the energy landscape
at zero temperature and never with any sense of thermal
exploration, we have sampled a spatially localized region of
phase space. Our results demonstrate that the Gardner
phenomenology is not just restricted to the easily accessible
regions of configuration space that are seen in thermal
materials, but is instead present everywhere.
This research demonstrates that Gardner physics can

be observed in athermal out-of-equilibrium systems.
Furthermore, that this result can be seen in an athermal
system demonstrates that the Gardner transition controls not
only the free energy landscape but also the underlying
energy landscape. As such, Gardner physics should be
amenable to experimental tests that need not rely on thermal
systems. This innovation marks a significant step forward
in fully understanding glasses and jammed materials as we
unify the concept of marginality in amorphous systems.

We thank Horst-Holger Boltz, Peter Morse, Sid Nagel,
and Camille Scalliet for useful discussions. This work
benefited from access to the University of Oregon high
performance computer, Talapas. This work was supported by
National Science Foundation (NSF) Career Grant No. DMR-
1255370 and the Simons Foundation No. 454939.

*Corresponding author.
rdennis@uoregon.edu

[1] E. Gardner, Spin glasses with p-spin interactions, Nucl.
Phys. B257, 747 (1985).

[2] M. Mezard, G. Parisi, and M. Virasoro, Spin Glass Theory
and Beyond: An Introduction to the Replica Method and Its
Applications (World Scientific, Singapore, 1987).

[3] T. Castellani and A. Cavagna, Spin-glass theory for pedes-
trians, J. Stat. Mech. (2005) P05012.

[4] J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, Exact
theory of dense amorphous hard spheres in high dimension.
II. The high density regime and the gardner transition, J.
Phys. Chem. B 117, 12979 (2013).

[5] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F.
Zamponi, Fractal free energy landscapes in structural
glasses, Nat. Commun. 5, 3725 (2014).

[6] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F.
Zamponi, Exact theory of dense amorphous hard spheres in
high dimension. III. The full replica symmetry breaking
solution, J. Stat. Mech. (2014) P10009.

[7] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F.
Zamponi, Glass and jamming transitions: From exact results

to finite-dimensional descriptions, Annu. Rev. Condens.
Matter Phys. 8, 265 (2017).

[8] M. Maiti and M. Schmiedeberg, Ergodicity breaking tran-
sition in a glassy soft sphere system at small but non-zero
temperatures, Sci. Rep. 8, 1837 (2018).

[9] G. Parisi and F. Zamponi, Mean-field theory of hard sphere
glasses and jamming, Rev. Mod. Phys. 82, 789 (2010).

[10] C. Rainone, P. Urbani, H. Yoshino, and F. Zamponi,
Following the Evolution of Hard Sphere Glasses in Infinite
Dimensions under External Perturbations: Compression and
Shear Strain, Phys. Rev. Lett. 114, 015701 (2015).

[11] C. Rainone and P. Urbani, Following the evolution of glassy
states under external perturbations: The full replica sym-
metry breaking solution, J. Stat. Mech. (2016) 053302.

[12] P. Urbani and F. Zamponi, Shear Yielding and Shear
Jamming of Dense Hard Sphere Glasses, Phys. Rev. Lett.
118, 038001 (2017).

[13] G. Biroli and P. Urbani, Liu-Nagel phase diagrams in
infinite dimension, SciPost Phys. 4, 020 (2018).

[14] C. Scalliet, L. Berthier, and F. Zamponi, Marginally stable
phases in mean-field structural glasses, Phys. Rev. E 99,
012107 (2019).

[15] G. Biroli and P. Urbani, Breakdown of elasticity in amor-
phous solids, Nat. Phys. 12, 1130 (2016).

[16] L. Berthier, P. Charbonneau, Y. Jin, G. Parisi, B. Seoane,
and F. Zamponi, Growing timescales and lengthscales
characterizing vibrations of amorphous solids, Proc. Natl.
Acad. Sci. U.S.A. 113, 8397 (2016).

[17] C. Scalliet, L. Berthier, and F. Zamponi, Absence of
Marginal Stability in a Structural Glass, Phys. Rev. Lett.
119, 205501 (2017).

[18] B. Seoane and F. Zamponi, Spin-glass-like aging in colloi-
dal and granular glasses, Soft Matter 14, 5222 (2018).

[19] C. L. Hicks, M. J. Wheatley, M. J. Godfrey, and M. A.
Moore, Gardner Transition in Physical Dimensions, Phys.
Rev. Lett. 120, 225501 (2018).

[20] Y. Jin, P. Urbani, F. Zamponi, and H. Yoshino, A stability-
reversibility map unifies elasticity, plasticity, yielding, and
jamming in hard sphere glasses, Sci. Adv. 4, eaat6387
(2018).

[21] Q. Liao and L. Berthier, Hierarchical Landscape of Hard
Disk Glasses, Phys. Rev. X 9, 011049 (2019).

[22] C. Artiaco, P. Baldan, and G. Parisi, An exploratory study of
the glassy landscape near jamming, arXiv:1908.06127.

[23] A. Seguin and O. Dauchot, Experimental Evidence of the
Gardner Phase in a Granular Glass, Phys. Rev. Lett. 117,
228001 (2016).

[24] A. P. Hammond and E. I. Corwin, Experimental observation
of the marginal glass phase in a colloidal glass, arXiv:1908
.08152.

[25] C. S. OHern, L. E. Silbert, A. J. Liu, and S. R. Nagel,
Jamming at zero temperature and zero applied stress: The
epitome of disorder, Phys. Rev. E 68, 011306 (2003).

[26] T. S. Majmudar, M. Sperl, S. Luding, and R. P. Behringer,
Jamming Transition in Granular Systems, Phys. Rev. Lett.
98, 058001 (2007).

[27] P. Charbonneau, E. I. Corwin, G. Parisi, and F. Zamponi,
Universal Microstructure and Mechanical Stability of
Jammed Packings, Phys. Rev. Lett. 109, 205501 (2012).

PHYSICAL REVIEW LETTERS 124, 078002 (2020)

078002-5

https://doi.org/10.1016/0550-3213(85)90374-8
https://doi.org/10.1016/0550-3213(85)90374-8
https://doi.org/10.1088/1742-5468/2005/05/P05012
https://doi.org/10.1021/jp402235d
https://doi.org/10.1021/jp402235d
https://doi.org/10.1038/ncomms4725
https://doi.org/10.1088/1742-5468/2014/10/P10009
https://doi.org/10.1146/annurev-conmatphys-031016-025334
https://doi.org/10.1146/annurev-conmatphys-031016-025334
https://doi.org/10.1038/s41598-018-20152-3
https://doi.org/10.1103/RevModPhys.82.789
https://doi.org/10.1103/PhysRevLett.114.015701
https://doi.org/10.1088/1742-5468/2016/05/053302
https://doi.org/10.1103/PhysRevLett.118.038001
https://doi.org/10.1103/PhysRevLett.118.038001
https://doi.org/10.21468/SciPostPhys.4.4.020
https://doi.org/10.1103/PhysRevE.99.012107
https://doi.org/10.1103/PhysRevE.99.012107
https://doi.org/10.1038/nphys3845
https://doi.org/10.1073/pnas.1607730113
https://doi.org/10.1073/pnas.1607730113
https://doi.org/10.1103/PhysRevLett.119.205501
https://doi.org/10.1103/PhysRevLett.119.205501
https://doi.org/10.1039/C8SM00859K
https://doi.org/10.1103/PhysRevLett.120.225501
https://doi.org/10.1103/PhysRevLett.120.225501
https://doi.org/10.1126/sciadv.aat6387
https://doi.org/10.1126/sciadv.aat6387
https://doi.org/10.1103/PhysRevX.9.011049
https://arXiv.org/abs/1908.06127
https://doi.org/10.1103/PhysRevLett.117.228001
https://doi.org/10.1103/PhysRevLett.117.228001
https://arXiv.org/abs/1908.08152
https://arXiv.org/abs/1908.08152
https://doi.org/10.1103/PhysRevE.68.011306
https://doi.org/10.1103/PhysRevLett.98.058001
https://doi.org/10.1103/PhysRevLett.98.058001
https://doi.org/10.1103/PhysRevLett.109.205501


[28] P. K. Morse and E. I. Corwin, Geometric Signatures of
Jamming in the Mechanical Vacuum, Phys. Rev. Lett. 112,
115701 (2014).

[29] E. Marinari, G. Parisi, F. Ricci-Tersenghi, J. J. Ruiz-
Lorenzo, and F. Zuliani, Replica symmetry breaking in
short-range spin glasses: Theoretical foundations and
numerical evidences, J. Stat. Phys. 98, 973 (2000).

[30] F. Murtagh, On ultrametricity, data coding, and computa-
tion, J. Classif. 21, 167 (2004).

[31] J. J. Schneider, A. Muller, and E. Schomer, Ultrametricity
property of energy landscapes of multidisperse packing
problems, Phys. Rev. E 79, 031122 (2009).

[32] E. Bitzek, P. Koskinen, F. Ghler, M. Moseler, and P.
Gumbsch, Structural Relaxation Made Simple, Phys. Rev.
Lett. 97, 170201 (2006).

[33] P. Charbonneau, E. I. Corwin, G. Parisi, A. Poncet, and F.
Zamponi, Universal Non-Debye Scaling in the Density of
States of Amorphous Solids, Phys. Rev. Lett. 117, 045503
(2016).

[34] P. K. Morse and E. I. Corwin, Echoes of the Glass Transition
in Athermal Soft Spheres, Phys. Rev. Lett. 119, 118003
(2017).

[35] M. P. Allen and D. J. Tildesley, Computer Simulation of
Liquids, 2nd ed. (Oxford University Press, Oxford, 2017).

[36] P. Charbonneau, E. I. Corwin, G. Parisi, and F. Zamponi,
Jamming Criticality Revealed by Removing Localized
Buckling Excitations, Phys. Rev. Lett. 114, 125504 (2015).

[37] G.-J. Gao, J. Blawzdziewicz, and C. S. O’Hern, Enumer-
ation of distinct mechanically stable disk packings in small
systems, Philos. Mag. 87, 425 (2007).

[38] S. S. Ashwin, J. Blawzdziewicz, C. S. O’Hern, and M. D.
Shattuck, Calculations of the structure of basin volumes for
mechanically stable packings, Phys. Rev. E 85, 061307
(2012).

[39] N. Xu, D. Frenkel, and A. J. Liu, Direct Determination of
the Size of Basins of Attraction of Jammed Solids, Phys.
Rev. Lett. 106, 245502 (2011).

[40] L. Berthier, H. Jacquin, and F. Zamponi, Microscopic theory
of the jamming transition of harmonic spheres, Phys. Rev. E
84, 051103 (2011).

[41] J. B. Kruskal, On the shortest spanning subtree of a graph
and the traveling salesman problem, Proc. Am. Math. Soc.
7, 48 (1956).

[42] R. Rammal, J. Angles d’Auriac, and B. Doucot, On the
degree of ultrametricity, J. Phys. Lett. 46, 945 (1985).

[43] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.124.078002 for a dis-
cussion of the minimum spanning tree and subdominant
ultrametric.

[44] F. Murtagh, A survey of recent advances in hierarchical
clustering algorithms, Comput. J. 26, 354 (1983).

[45] C. P. Goodrich, A. J. Liu, and S. R. Nagel, Finite-Size
Scaling at the Jamming Transition, Phys. Rev. Lett. 109,
095704 (2012).

PHYSICAL REVIEW LETTERS 124, 078002 (2020)

078002-6

https://doi.org/10.1103/PhysRevLett.112.115701
https://doi.org/10.1103/PhysRevLett.112.115701
https://doi.org/10.1023/A:1018607809852
https://doi.org/10.1007/s00357-004-0015-y
https://doi.org/10.1103/PhysRevE.79.031122
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.117.045503
https://doi.org/10.1103/PhysRevLett.117.045503
https://doi.org/10.1103/PhysRevLett.119.118003
https://doi.org/10.1103/PhysRevLett.119.118003
https://doi.org/10.1103/PhysRevLett.114.125504
https://doi.org/10.1080/14786430600851760
https://doi.org/10.1103/PhysRevE.85.061307
https://doi.org/10.1103/PhysRevE.85.061307
https://doi.org/10.1103/PhysRevLett.106.245502
https://doi.org/10.1103/PhysRevLett.106.245502
https://doi.org/10.1103/PhysRevE.84.051103
https://doi.org/10.1103/PhysRevE.84.051103
https://doi.org/10.1090/S0002-9939-1956-0078686-7
https://doi.org/10.1090/S0002-9939-1956-0078686-7
https://doi.org/10.1051/jphyslet:019850046020094500
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.078002
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.078002
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.078002
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.078002
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.078002
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.078002
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.078002
https://doi.org/10.1093/comjnl/26.4.354
https://doi.org/10.1103/PhysRevLett.109.095704
https://doi.org/10.1103/PhysRevLett.109.095704

