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Marginal stability in memory training of jammed solids
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Memory encoding by cyclic shear is a reliable process to store information in jammed solids, yet its underlying
mechanism and its connection to the amorphous structure are not fully understood. When a jammed sphere
packing is repeatedly sheared with cycles of the same strain amplitude, it optimizes its mechanical response
to the cyclic driving and stores a memory of it. We study memory by cyclic shear training as a function of
the underlying stability of the amorphous structure in marginally stable and highly stable packings, the latter
produced by minimizing the potential energy using both positional and radial degrees of freedom. We find that
jammed solids need to be marginally stable in order to store a memory by cyclic shear. In particular, highly stable
packings store memories only after overcoming brittle yielding and the cyclic shear training takes place in the
shear band, a region which we show to be marginally stable.
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I. INTRODUCTION

When subject to a repeated driving, amorphous solids are
able to adapt their spatial structure to the external deformation
[1]. By doing so, they store a memory of the periodic driving
as a structural information which can be later extracted [2,3].
A widely used protocol for encoding a memory in jammed
solids is cyclic shear training [1,4]: The system is repeatedly
sheared with cycles of strain amplitude γtrain, until it reaches
a periodic orbit, i.e., a sequence of rearrangements that the
system undergoes every time the same cyclic perturbation
is applied. Cyclic shear training finds an explanation in the
complex energy landscape of amorphous solids [5,6] where
each rearrangement corresponds to a transition between two
energy minima. As the training goes on, the system finds
the most energetically favorable path between minima op-
timizing the mechanical response to the cyclic deformation
[4,7]. While previous studies have shown that cyclic shear
brings the system to a lower-energy minimum [8], recent ad-
vances in producing extremely annealed glassy configurations
in thermal [9] and athermal simulations [10] have led to the
conclusion that the rheology of amorphous solids is ruled by
the preparation protocol [11–13]. In particular, cyclic shear
is only efficient in lowering the energy of marginally stable
glasses [8,13], i.e., configurations that become unstable under
very small perturbations [14,15]. By contrast, cyclic shear
fails to further anneal highly stable glassy configurations [13].
Here, we explore the connection between memory training by
cyclic shear and mechanical stability in jammed solids and
show that memory training is only possible when the system,
or a portion of it, is marginally stable.

We produce highly stable packings of jammed soft spheres
via a recently developed algorithm based on the simultaneous
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minimization of positional and radial degrees of freedom [16],
while a conventional fast-inertial-relaxation engine (FIRE)
minimization is used to produce marginally stable packings
[17,18]. While marginally stable packings show ductile be-
havior upon increasing the applied shear strain [19], highly
stable packings are brittle and yield by forming a shear band
[10,11,20,21]. Subject to cyclic shear training, marginally sta-
ble packings store memories down to low strain amplitudes
and show a uniform participation to the training. By contrast,
highly stable packings can only store memories past the yield-
ing strain and only the particles in the shear band actively
participate to the training. Here, we show that the shear band
is a marginally stable region of the system and its size controls
the memory training.

II. NUMERICAL METHODS

We produce samples of athermal soft sphere packings us-
ing the pyCudaPacking package developed by Corwin et al.
[22,23]. Each packing is composed of N particles contained
in a three-dimensional simulation box of unitary volume with
periodic boundary conditions. Particles interact via the soft
sphere harmonic contact potential

Ui j = q2
i j�(qi j ), qi j = 1 − |�ri j |

σi j
, (1)

where �ri j is the distance between particles i and j, σi j is
the sum of their radii, and � is the Heaviside step function.
We use a log-normal distribution of particle sizes with 20%
polydispersity to avoid nucleation of crystalline structures.
This model undergoes the jamming transition at zero pressure
where particles share just enough contacts to enforce global
rigidity [18]. We produce marginally stable packings by min-
imizing the energy with respect to only positional degrees of
freedom via the FIRE algorithm [24]. To produce highly stable
packings, we add particle radii as constrained variables to the
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FIG. 1. Stress vs strain curves for highly stable (blue) and
marginally stable (green) packings produced at pressure P0 � 0.08
and composed of N = 4096 particles. The stress is scaled by its
typical value σ∞ in the plastic regime after yielding. Inset: Yielding
stress σY as a function of the initial pressure P0 at which brittle
packings are produced.

minimization. In particular, we start from a configuration with
random positions and polydisperse size distribution, and allow
both particle positions and radii to relax in order to minimize
the energy. To keep the initial size distribution fixed, we con-
strain the radial components of the particle forces by fixing a
set of moments of the distribution, namely {−6,−3, 3} [16].
Once the energy is minimized, we fix the radii and perform
the shear training.

We simulate athermal quasistatic shear (AQS) along the yx
direction by applying steps of �γ = 10−3 strain with Lees-
Edwards boundary conditions. A single strain step consists of
an affine displacement of each particle (xi, yi, zi ) → (xi, yi +
�γ xi, zi ), followed by a minimization of the potential energy
with respect to the positional degrees of freedom only. We
choose to study configurations produced at pressure P0 � 0.08
to optimize the computational cost of our simulations which
slows down as the jamming transition is approached.

The rheology of marginally stable and highly stable pack-
ings is depicted in Fig. 1. Marginally stable packings show
ductile behavior as they encounter the first instability at very
small strain and yield through a series of plastic rearrange-
ments [19]. On the other hand, highly stable packings are
brittle: They show an elastic response up to a large yielding
strain γY . After yielding, a sharp stress drop signals the failure
under the external load and the system breaks along a shear
band [10,20]. In the inset of Fig. 1, we plot the yielding stress
σY of highly stable packings as a function of the pressure at
which they are produced, P0. The yielding stress plateaus to
a finite value as the jamming point is approached in the limit
P0 → 0 showing that highly stable packings are brittle down
to extremely low pressures.

III. EVOLUTION OF STABILITY UNDER SHEAR

To understand the relation between the mechanical stability
of a packing and its ability to store memories of shear ampli-
tudes, we first study the evolution of mechanical stability upon

(a)

(b)

FIG. 2. (a) Pressure change δP required to push a packing to a
nearby instability as a function of the applied strain γ averaged over
20 samples for both highly stable (blue) and marginally stable (green)
packings of N = 4096 particles. The dotted line indicates the average
yielding strain of highly stable packings. (b) Magnitudes of the first
20 low-frequency eigenvectors, averaged over slices of the system
along the x axis at zero strain (black), right after yielding at γ =
0.122 (red), and in the plastic regime at γ = 0.3 (yellow) for a highly
stable packing. Data are shifted to center the shear band.

increasing the applied shear strain. Before reaching the yield-
ing transition, highly stable packings are characterized by a
smooth rise of both pressure and energy in the elastic regime.
At the same time, the low-frequency vibrational density of
states, which rules the linear response of the system [25],
is progressively shifted towards lower frequencies. These
properties suggest that highly stable packings would become
unstable under an increasingly smaller perturbation as they
approach the yielding point. We investigate how the stability
of a packing evolves during AQS by computing the change
in pressure δP required to push the system to an instability
without changing the contact network [16], as reported in the
top panel of Fig. 2. In marginally stable packings, the distance
to a nearby instability fluctuates around a typical value across
all the explored range of strain. Highly stable packings present
a very different behavior. At zero strain, they require a large
change in pressure to find a nearby instability. As the system is
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progressively sheared, δP decreases following an exponential
decay which ends at the yielding point. After yielding, δP
follows a similar behavior as for marginally stable packings.
The behavior of δP implies that highly stable packings lose
stability and become marginally stable after yielding.

We then explore how the progressive loss of stability in
highly stable packings influences the spatial structure of the
system by computing the first 20 low-frequency eigenvectors
of the Hessian, i.e., the vibrational modes which control the
particle motion under small perturbations [25]. In the bottom
panel of Fig. 2, we report the averaged magnitude of the
low-frequency eigenvectors as a function of the applied strain.
At zero strain, the motion due to small perturbations spans the
entire system uniformly, a typical behavior for highly stable
jammed solids [26]. After yielding, the motion of the low-
frequency eigenvectors stays confined in the shear band while
the rest of the system is less susceptible to external pertur-
bations. The shear band is then a marginally stable region of
the system where particles are more likely to rearrange under
quasistatic deformations. We can now show that the existence
of a shear band in highly stable packings past yielding is
necessary for training a memory by cyclic shear.

IV. MEMORY TRAINING

We use AQS to encode a memory of a strain amplitude γtrain

by cyclic shear in both marginally and highly stable packings.
The following results represent averages over 35 samples of
N = 1024 particles for both cases. We train a packing by
repeating shear cycles until the system reaches a periodic orbit
which we identify when the energy at the end of a cycle
does not change after one or more consecutive cycles. The
encoded memory can then be extracted using a readout [2,27]:
Starting from a configuration at zero strain, we perform a
cycle of strain amplitude γ and measure the distance between
the initial and final configurations as

�cycle =
√∑

i

∣∣�ri
final − �ri

initial
∣∣2

, (2)

where the sum runs over the stable particles, i.e., those with
at least d + 1 force bearing contacts [28]. The readout is per-
formed for a range of strain amplitudes γ ∈ [0, 0.2], separated
by an increment of �γ = 10−3.

Before training a memory, the readout plots for marginally
and highly stable packings show two very different behaviors,
as can be seen from the top panel of Fig. 3. The readout
for highly stable packings (blue) shows that these are re-
versible for any cycles with γ < γY as �cycle stays equal to
zero up to the yielding transition. After the brittle failure,
�cycle shows an upturn and the system becomes irreversible.
For marginally stable packings (green), by contrast, �cycle

monotonically increases from zero starting at the beginning
of the readout. This indicates that a marginally stable packing
undergoes irreversible rearrangements for all the explored
strain amplitudes. The readout plots for trained packings is
shown in the bottom panel of Fig. 3. Here, �cycle stays close
to zero for cycles of strain amplitudes smaller than the training
strain, γtrain = 0.15. Note that γtrain is larger than the average
yielding strain of highly stable packings. For γ > γtrain, both

(b)

(a)

FIG. 3. Readout shear: �cycle as a function of the strain ampli-
tude γ for (a) untrained and (b) trained configurations of highly
stable (blue) and marginally stable (green) packings. The solid red
line indicates the encoded strain amplitude, γtrain = 0.15, and the
dashed black line shows the average yielding strain for highly stable
packings.

plots show a quick upturn, which is a signature of the memory
encoded by cyclic shear training.

We study the trainability of our packings by plotting the
number of training cycles Ncycles needed to encode a memory
as a function of the training strain amplitude γtrain (see Fig. 4).
While marginally stable packings store memories for all the
explored ranges of γtrain, highly stable packings are able to
store memories only for strain amplitudes larger than the
yielding strain. Moreover, at a fixed strain amplitude, highly
stable packings need a larger Ncycles to reach a periodic orbit
compared to marginally stable packings. This is due to the
difference in the fraction of particles which are actively par-
ticipating to the training: While in marginally stable packings
all the particles are uniformly displaced by the shear cycles,
in highly stable packings the particles within the shear band
rearrange much more than others.

To support this claim, we study the relation between
marginal stability and the number of training cycles by tun-
ing the width of the shear band. This is accomplished by
shearing brittle packings with an initial cycle of large strain
amplitude γbreak before performing cyclic shear training at a
given γtrain. During the breaking cycle, particles adjacent to
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FIG. 4. Number of training cycles required to encode a memory,
Ncycles, as a function of the encoded strain amplitude γtrain for brittle
(blue) and ductile (green) packings as well as brittle packings that are
broken with a single cycle of strain amplitude of γbreak = 0.2 (pink),
1 (red) and 5 (yellow) before the training. Inset: Shear band size δ

as a function of γbreak after training a memory of γtrain = 0.15 with
the same color code as in the main plot. The error bars represent the
standard error on the mean.

the shear band relax and lose their initial stability. We estimate
the size of the shear band δ by computing the distribution
of �cycle along one of the transverse directions to shear and
extracting the width of the distribution peak. We measure δ

both after the initial breaking cycle and cyclic shear training
and find it to be the same within error. As shown in the inset
of Fig. 4, the size of the shear band computed after training
a memory of γtrain = 0.15 is proportional to γbreak. Figure 4
shows that for any γbreak, broken brittle packings are able to
store memories of strain amplitudes below the yielding strain.
As γbreak increases, the trainability curve gets closer to the
one for ductile packings (green). For γbreak = 5 (yellow), the
shear band is spread out to the entire system and the number
of training cycles for strain amplitudes above the yielding
strain are similar to those reported for ductile packings. As the

shear band broadens, more particles actively participate in the
training. The existence of a shear band is thereby necessary to
store a memory by cyclic shear in brittle packings, suggesting
that memories can only be formed in marginally stable regions
of the system.

V. CONCLUSIONS

In this article, we explore the role of mechanical stability
in the context of memory training by cyclic shear in jammed
solids. While marginally stable packings are able to store
memories for all the explored strain amplitudes, we observe
that highly stable packings need to first overcome brittle yield-
ing and form a shear band in order to do so. Here is where
mechanical stability comes into play: Brittle packings become
marginally stable after yielding and marginal stability is con-
fined in the shear band where most of the rearrangements
during the training take place. This result shows that memory
training in jammed packings is only possible if the system, or
a portion of it, is marginally stable.

The strong connection between memory training and me-
chanical stability suggests that the development of memory in
real space is coupled to the evolution of the low-frequency vi-
brational modes, an aspect of memory training which requires
further investigation. An exciting direction would be to extend
the work conducted here to soft sphere packings driven by
athermal quasistatic random displacements, an active matter
model introduced in theory [29] and simulations [30], where
the brittle failure happens in regions randomly distributed
across the system. Training a highly stable packing with this
cyclic driving could potentially allow for encoding memories
in pockets of the system which could be preemptively de-
signed, broadening the application scope of trainable jammed
solids.
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