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Interplay between percolation and glassiness in the random Lorentz gas
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The random Lorentz gas (RLG) is a minimal model of transport in heterogeneous media that exhibits a
continuous localization transition controlled by void space percolation. The RLG also provides a toy model of
particle caging, which is known to be relevant for describing the discontinuous dynamical transition of glasses.
In order to clarify the interplay between the seemingly incompatible percolation and caging descriptions of the
RLG, we consider its exact mean-field solution in the infinite-dimensional d — oo limit and perform numerics
in d =2...20. We find that for sufficiently high d the mean-field caging transition precedes and prevents
the percolation transition, which only happens on timescales diverging with d. We further show that activated
processes related to rare cage escapes destroy the glass transition in finite dimensions, leading to a rich interplay
between glassiness and percolation physics. This advance suggests that the RLG can be used as a toy model to
develop a first-principle description of particle hopping in structural glasses.
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Introduction. The random version of the venerable Lorentz
gas (RLG) consists of a tracer navigating between a collection
of Poisson-distributed hard spherical obstacles. Despite the
apparent simplicity of the model, its phenomenology is quite
rich. As the obstacle density increases, tracer diffusion is first
delayed and then suppressed altogether. In physical dimen-
sions, d = 2, 3, the localization transition provably coincides
with that of void space percolating [1,2], and is hence con-
tinuous and accompanied by an extended subdiffusive regime
[3-5]. The minimal yet complex nature of the RLG makes
it a standard model of transport in heterogeneous media for
systems as diverse as electrons in metals with impurities [6]
and proteins in cells [7,8].

The RLG also plays a key role in the theory of glasses.
Its consideration was an important step toward formulating
the mode-coupling theory (MCT) of glasses [9-12], and has
provided key insight into the role of pinning particles in
deeply supercooled liquids [13—-16]. The RLG can further be
construed as a limit of a hard-sphere binary mixture [17-19]
with one component—the obstacles—being infinitely smaller
than the infinitely dilute other—the tracer. (Exchanging ob-
stacle and tracer sizes recovers Fig. 1(a) [12].) If the analogy
suggested by this special limit holds, one might then expect
the RLG model to be part of the hard-sphere glass universality
class. Studying its behavior in high dimension d could there-
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fore also shed light on large-d corrections to the mean-field
theory of glasses [20].

In this Letter, we resolve the interplay between percolation
and glassiness in the RLG. We first formulate a mean-field
theory (MFT) of the RLG, which becomes exact in the
infinite-dimensional limit d — oco. We find analytically that
in this limit, the RLG undergoes a dynamical arrest of the
MCT type, identical to that of hard-sphere glasses in the
same limit [20], which confirms the binary mixture analogy.
A fundamental inconsistency, however, follows from this re-
sult [Fig. 1(a)]: on the one hand, in finite, low d, the exact
mapping of the RLG to a percolation transition gives rise to a
continuous localization transition [3-5,12]; on the other hand,
MEFT predicts a discontinuous caging transition. The simplest
possible resolution, namely, that the nature of the percolation
transition might change in the d — oco limit, was recently
ruled out [21]. Hence, some nontrivial corrections to MFT
must play an important role for RLG physics.

In order to probe these effects, we investigate the problem
numerically in d = 2...20 and obtain accurate percolation
thresholds (up to d =9) as well as static and dynamical
descriptions of caging. Three main insights follow from this
study. (i) MFT provides the exact d — oo dynamics over
finite timescales, during which the dynamical arrest prevents
the tracer from exploring the percolating network of cages.
(i) MFT fails to capture the d — oo percolation transi-
tion because the long-time and large-dimensional limits do
not commute. (MFT holds when one first takes the large-
dimensional limit, whereas the percolation transition relies

©2021 American Physical Society
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FIG. 1. (a) Two descriptions of RLG uncaging upon decreasing ¢: Top: The MFT cage discontinuously disintegrates at ¢4. Bottom: cages
merge continuously and form an infinite percolating cluster at ¢,. (b) Finite-size scaling of ¢,(N) ind =210 9. (c) @p(c0)ind =210 9
(squares, from right to left) compared with the MFT @4 (dashed line). The red line denotes a polynomial fit to the percolation thresholds,

Eqg. (3). Extrapolating this form strongly suggests that limy_, .« @, > @q.

on processes taking place on a timescale that diverges with
d.) (iii) The percolating network of cages is explored through
activated hopping events, which happen with probability van-
ishing exponentially with d, and can be analytically described
by instantonic corrections of MFT. These events are expected
to play a key role in glass formation and yet have thus far
eluded theoretical grasp. We thus conclude that the RLG is a
toy model of some of the key activated processes in glasses,
and is simple enough to be treated analytically and numeri-
cally, thus opening the way for a first-principle description of
such processes.

Mean-field theory derivation. The MFT of glass-forming
liquids, which becomes exact in the d — oo limit [20], pre-
dicts the existence of a dynamical (MCT-like) transition, at
which the long-time limit of the scaled mean-squared dis-
placement (MSD), A = d A, jumps from diverging diffusively
to a finite value. Because the infinitely asymmetric binary
fluid mixture that coincides with the RLG in the d — oo
limit might, however, be singular, we here sidestep this anal-
ogy by directly solving the model by cavity reconstruction.
Writing the explicit partition function for the RLG and using
the replica symmetric construction of Refs. [20,22,23], one
obtains a self-consistent expression for A:

1
2¢

L[ . dq(A/2,h
- —A/ dhe"ng(Aya, QL2 )
. A

at the dimensionally rescaled packing fraction ¢ = pV,/d,
where p is the number density of obstacles, V; is the volume of
d-dimensional unit sphere [23], and ¢(A, h) = {1 + erf[(h +
A/z)/ﬂ]}/z. Equation (1) gives that a dynamical glass
transition takes place at ¢g = 2.4034 .. ., half that ford — oo
hard spheres [22].

Considering that A is an order parameter for both the per-
colation and the glass transitions, one may expect the theory
of glasses to also describe percolation criticality. This is not
the case. While the cage size is expected to diverge logarith-
mically in mean-field percolation [21], the MFT cage size is
twice that of hard spheres, i.e., A= 2AH3(2¢), and thus also
presents a square-root singularity upon approaching @y, i.e.,
A(@q) — A@) ~ /@ — §g. In other words, we here confirm
that RLG and hard-sphere fluids share a same MFT univer-

sality class characterized by a discontinuous glass transition,
which is distinct from that of simple percolation.

Percolation threshold. Although the percolation criticality
is distinct from that of the dynamical glass transition, one
might nonetheless wonder whether the former smoothly ex-
trapolates to the latter in the limit d — oco. We thus consider
the scaling of the percolation threshold, ¢,, with dimension
to determine if it coincides with the MFT prediction for @4
in the d — oo limit. In systems with N Poisson-distributed
obstacles in a d-dimensional box under periodic boundary
conditions, the void percolation can be mapped onto the bond
percolation of a network built on the Voronoi tessellation of
obstacles [24]. We here assign each edge of that tessellation
the smallest obstacle radius o that can block it, and use a
disjoint-set forest algorithm adapted from continuum-space
analysis to identify the percolated cluster [25,26]. Optimizing
the periodic boundary conditions [23,27] and the Voronoi
tessellation [23,28,29] enables us to obtain @,(N)uptod = 9.
The thermodynamic @;, is then extracted by fitting [Fig. 1(b)]

|@p(N) — @p| ~ N7HY, 2)

where v is the percolation correlation length exponent [23,30].

Ford < 8, ¢p < @q, but ford =9 ¢, = 2.46(4) > @q, in-
dicating that the order of the two switches between d = 8 and
9. Fitting the results to a cubic form,

d

further suggests that limy_, . @, = 3.42(8), which differs sig-
nificantly from the MFT prediction [Fig. 1(c)]. In other words,
while MFT is expected to be exact in d — oo limit, it fails
to capture the percolation transition in that same limit. A
densifying system in d > 8 thus first encounters around @qg
(imperfect) local cages that percolate on larger scales, and can
be escaped via activated hopping processes [31], before being
properly localized at the percolation threshold ¢p.

Cage sizes. In order to ascertain this scenario, the MFT
description of caging needs first to be assessed. To do so,
we implement a cavity reconstruction scheme adapted from
Refs. [23,31,32], which can be viewed as the continuum-space
generalization of the Leath algorithm [33]. Specifically, we
define a hyperspherical shell, centered at the origin, of inner

A 1 1\2 1\3
@p = 3.42(8) — 10.3(9)5 + 13(3)(g> — 9(4)( ) N E))
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FIG. 2. Scaling of the cage size with density for different d.
Results for d = 2-6 are obtained by random sampling, and those for
d > 8 from the long-time caging dynamics. At high densities, the
MFT, d — oo prediction (dashed line) is steadily approached as d
increases, but at small densities the percolation criticality dominates
the growth of the cage size (e.g., in d = 3 the cage size diverges
upon approaching @, (red dashed line)). Note that results in high di-
mension and small densities are numerically inaccessible. Inset: The
scaling collapse of the deviation from the MFT prediction identifies
the dominant 1/d correction.

radius o and outer radius rp,y, and pick a number of obsta-
cles N from the Poisson distribution p(N) = N} e~ /N with
No = d@(ré,, — o), which are then placed uniformly at ran-
dom within that shell. (The cutoff r,,x must be large enough
that the results do not depend on it.) This algorithm guarantees
that the probability of obtaining a cavity, C, containing the
origin exactly tracks the distribution of cavities at that same
¢ in an infinitely large system. A set of randomly distributed
points {S;} within C can then be used to compute the second
moment of the coordinates,

A(C) = ((S; — ;)% = 2((S7) — (S))P), 4

and then A = Ec[A(C)]. Physically, this method provides
the long-time limit of the MSD of a tracer without explicitly
running its dynamics, which is advantageous because it elim-
inates putative dynamical bottlenecks. However, because its
computational cost increases exponentially with d, for d > 8
the explicit long-time limit of the tracer dynamics needs to
be computed to estimate A. The agreement between the two
approaches at intermediate d nevertheless indicates that bot-
tlenecks can be confidently neglected in this regime.

For @ > (4, the (scaled) cage size nicely converges to
the MFT prediction as d increases (Fig. 2), and the dom-
inant correction is perturbative in 1/d. In this high-density
regime, the quantitative consistency with MFT is robust down
to physical dimensions. A generalized MFT with perturbative
corrections should thus offer accurate predictions in all d, a
clear opportunity for future theoretical studies.

By contrast, for ¢ ~ @q4, a regime dominated by percolation
criticality—with A diverging at ¢,—is observed (Fig. 2). The

101 ®

FIG. 3. Time evolution of the MSD in the ballistic dynamics in
(a) d = 6 and (b) 10 under log-log scale, and (c),(d) for the same
dimensions under log-lin scale. The long-time dynamics is diffusive
for < ¢, and localized for > @,. Ind > 6, A at @p is expected
to grow logarithmically at long times. In (d), specifically, the sig-
nature of an intermediate dynamical slowdown emerges before that
logarithmic growth.

static cage size either crosses ¢4 smoothly or is expected to
diverge before reaching ¢4 from above, depending on the
relative order of @q and ¢,. These strong discrepancies with
respect to MFT found around @4 hint at a complex interplay
between glass and percolation physics.

Tracer dynamics. In order to disentangle the two phenom-
ena, we consider the dynamical counterpart of the above static
description. We first examine the tracer dynamics, following
the ballistic approach of Hofling et al. [5,34], setting the
microscopic timescale such that the short-time growth of the
MSD scales as A() =72 when 7 — 0 in all dimensions.
As expected from percolation theory [4,21], in the long-time
limit either localization or diffusion is observed, for ¢ > @,
and ¢ < @p, respectively [Figs. 3(a) and 3(b)]. An interme-
diate subdiffusive regime, which scales logarithmically with
time for d > 6 [21], also develops around the percolation
threshold, and fully dominates the dynamics at ¢ = ¢,. Fig-
ures 3(c) and 3(d) consider more closely the interplay between
¢pand @4. In d =6, no hint of MFT-like caging is ob-
served around @, as expected. Because ¢, < ¢q, percolation
dominates the caging dynamics. Hence, for ¢ > ¢, logarith-
mic growth immediately follows the ballistic regime until a
plateau is reached. By contrast, in d = 10, where ¢, > @q,
a weak dynamical slowdown emerges at intermediate times
for @ > @q. Such a preasymptotic effect is distinctly absent
in lattice systems [21]. However, conclusively determining
whether this slowdown is controlled by MFT caging or by
some other model-specific preasymptotic correction to per-
colation criticality would require higher-dimensional systems
than this computational scheme currently permits.

To pinpoint the origin of this weak dynamical slowdown,
we instead seek an observable more sensitive to MFT-like
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FIG. 4. Cages and cage escapes in d = 4-20 obtained from dy-
namical cavity reconstructions. (a) Modal (solid line) and mean-
(dashed line) squared displacements of tracers with time at = 2.7,
along with the MFT prediction (dash-dotted line). MSD curves ter-
minate when 2% of tracers have escaped. While the MSD drifts
with time, the mode robustly plateaus. (b) The plateau of Anode
approaches the MFT prediction as in Eq. (5) for various ¢. Error
bars are obtained from bootstrapping and also reported in panel (a)
for reference. (c) The scale of the perturbative correction to the
cage size grows upon approaching @q, and empirically fits kipoqe =
0.46/+/8% + 0.81. (d) Cage escape probabilities for Aue =4inp =
2.5, 2.7, and 3 collapse under an instantonic form with empirical
prefactor Cese = 0.4.

caging. Recalling that percolation criticality is dominated by
rare large cages, while MFT is evaluated via a saddle point
that extracts the typical cage size, we choose to focus on the
modal cage size, i.e., Amode(t) = argmax P[(A(¢)] [23]. By
construction, Ao eliminates the contribution of rare large
cages and cage escapes, and thus effectively plays the same
role as the generalized MSD considered in recent glass studies
[31,35]. This observable is further amenable to a dynamical
version of the static cavity reconstruction. Although this setup
misses finite-yet-large cages, it provides a sufficiently broad
span of the cage-size distribution to reliably identify A poqe.
It also extends the numerically accessible dimensional range.
Results up to d =20 and averaged over at least 2 x 10°
independent samples with Amax = d(Fmax — 0)* > 14 are re-
ported in Fig. 4. We find that A e plateaus quickly after the
ballistic regime, even near @, and that this plateau steadily ap-
proaches the MFT caging prediction as d increases [Fig. 4(a)],
even for §g < @,(d)ind > 8. Note that a small finite-size cor-
rection due to finiteness of the shell thickness appears in the
highest dimension considered, d = 20, but the convergence
to the MFT prediction remains within the statistical error
range [23].

Remarkably, the approach to the MFT prediction exhibits
a perturbative 1/d correction [Fig. 4(b)],

kmode

A:AMFT_ d

®)

even fairly close to (¢q. Fitting the modal cages with Eq. (5)
[Fig. 4(b)] using the theoretical Amrr provides a correction
prefactor, kpoqe, that increases as 6@ = ¢ — @q shrinks. (If
AMFT is left as a fit parameter, its deviation from the the-
oretical prediction is <5% consistently with the numerical
uncertainty of the data.) Remarkably, perturbative corrections
to MFT become increasingly pronounced upon approaching
@q. Two processes beyond the d — oo MFT description, how-
ever, also then appear: (i) the cage size distribution displays a
large—A tail, and (ii) a substantial fraction of tracers escape
the shell. As a result, within the range of system sizes and
dimensions accessible in numerical simulations, the mode no
longer converges to the MFT prediction for ¢ < 2.45.

In order to disentangle these two different physical con-
tributions and to resolve how the MFT description emerges
as d increases, we consider the first-passage time of the tracer

escaping from a center displacement v/ A .. For a fixed scaled
density @ > @q, the onset of cage escapes is found to be
exponentially delayed in time with increasing dimension for
d > 8 [Fig. 4(d)]. More precisely, the caumulative probability
of a tracer escaping, P (f), at fixed ¢ follows a scaling
form

Puc(F389) ~ fe C150f;5p), (©6)

with master function f (x;8¢) and a prefactor CeSC(AeSC) ~
0.4 that depends only weakly on the choice of cutoff for
Aesc / Amode ~ O(1). In small dimensions, however, cage es-
capes deviate from this scaling form. Mean-field-like caging
around @q is then so weak that higher-order corrections dom-
inate.

We can now properly understand the logarithmic drift of
the MSD that appears at intermediate times when @, > @q as
being due to imperfect caging. As dimension increases, the
MFT caging prediction is recovered because the prefactor of
the logarithm slowly vanishes. Geometrically, most cages are
open for g < ¢ < @p, thus giving rise to void percolation, but
escape paths out of open cages steadily shrink with increasing
d, giving rise to more pronounced dynamical caging. This
collapse form further suggests that near ¢4 cage escapes are
so prevalent that they dominate the dynamics in any finite
d. Such hopping processes (exponentially suppressed in d by
contrast to 1/d perturbations) have long been debated in glass
physics [36-38], but this particular instantonic correction to
the MFT of glasses was previously unknown. More than a
mere correction, it is here found to be the primary reason
why the sharp mean-field dynamical glass transition becomes
a crossover in finite d.

Conclusion. Analyzing the interplay between glassiness
and percolation in the RLG here establishes that the RLG
dynamics is identical to that of hard-sphere glasses in d —
oo over finite timescales, and provides quantitative evi-
dence of nontrivial finite-dimensional corrections to MFT.
More specifically, we have found that the static cage size
at high density and the typical dynamical cage size at all
densities show a perturbative, 1/d, correction to the MFT
d — oo result, and that nonperturbative dynamical cage es-
capes are suppressed exponentially with d around @q. In
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the RLG, these finite-dimensional corrections are dominant
in physical dimensions, d = 2,3. Our work therefore re-
veals in a precise and concrete way the important role
played by activated processes in avoiding the dynamical glass
transition.

Having identified these two types of corrections to MFT
that go beyond the traditional instantonic picture [39] and
facilitation [40], we should now be able to identify activated
processes for more realistic models of glasses and obtain first-
principle description of nonperturbative corrections to MFT
for finite-dimensional disordered systems. Our results also
suggest a putative first-principle pathway for relating local
structure and dynamics in glass-forming liquids [41].
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