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Jamming criticality defines a universality class that includes systems as diverse as glasses, colloids, foams,
amorphous solids, constraint satisfaction problems, neural networks, etc. A particularly interesting feature of
this class is that small interparticle forces ( f ) and gaps (h) are distributed according to nontrivial power laws.
A recently developed mean-field (MF) theory predicts the characteristic exponents of these distributions in the
limit of very high spatial dimension, d → ∞ and, remarkably, their values seemingly agree with numerical
estimates in physically relevant dimensions, d = 2 and 3. These exponents are further connected through a
pair of inequalities derived from stability conditions, and both theoretical predictions and previous numerical
investigations suggest that these inequalities are saturated. Systems at the jamming point are thus only marginally
stable. Despite the key physical role played by these exponents, their systematic evaluation has yet to be
attempted. Here, we carefully test their value by analyzing the finite-size scaling of the distributions of f and h
for various particle-based models for jamming. Both dimension and the direction of approach to the jamming
point are also considered. We show that, in all models, finite-size effects are much more pronounced in the
distribution of h than in that of f . We thus conclude that gaps are correlated over considerably longer scales
than forces. Additionally, remarkable agreement with MF predictions is obtained in all but one model, namely
near-crystalline packings. Our results thus help to better delineate the domain of the jamming universality class.
We furthermore uncover a secondary linear regime in the distribution tails of both f and h. This surprisingly
robust feature is understood to follow from the (near) isostaticity of our configurations.
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I. INTRODUCTION

Jammed systems may lack dynamics, but their study is far
from motionless. A surge of physical interest over the past
couple of decades has indeed led to marked advances [1–8].
This sustained interest stems partly from jamming being ob-
served in systems as varied as grains, foams, and emulsions,
and partly from jamming exhibiting features encompassed in
few universality classes. The mix of ubiquity and universality
has motivated the search for a common framework to explain
the pervasiveness of jammed systems and their properties,
starting with the seminal works of Liu, Nagel, and cowork-
ers [9,10]. It has since become clear that although different
systems reach jamming by tuning different physical variables,
several properties near and at the onset of jamming are shared
by all of them. In other words, the same underlying physics
should be responsible for the jamming phenomenology. Even
though a fully comprehensive theory remains to be formu-
lated, a major step forward has been the discovery that this
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jamming point is critical and gives rise to a phase transition,
albeit an out-of-equilibrium one [11].

Attempts to better understand jamming [2] commonly fo-
cus on systems of frictionless spherical particles [5], which
are central to a fairly wide universality class (see below).
An outstanding example of the theoretical analysis that can
be achieved by such geometric simplification is the re-
cently developed mean-field (MF) theory [1,6,12–15] that
describes—exactly, in the infinite-dimensional limit—the be-
havior of glass-forming liquids from the point they fall out
of equilibrium up to jamming. Even though one might expect
this theory only to be valid in high spatial dimensions, near
jamming it describes many of the critical properties observed
in dimensions as low as d = 2 and d = 3 [1,6,16,17]. (A
different criticality is observed in quasi-one-dimensional sys-
tems [18,19]). Jamming criticality is peculiar because not only
thermodynamic variables, e.g., the pressure or bulk and shear
moduli, but also collective quantities, such as the mean square
displacement and the average contact number, scale critically
with the distance from the jamming point. More specifically,
denoting the configuration density (or packing fraction) φ and
its value at the onset of jamming φJ , several quantities either
jump discontinuously or scale as power laws, |φ − φJ |μ, as the
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jamming point is approached [3,10,20]. Although φJ depends
sensitively on the preparation protocol—thus giving rise to a
density continuum of jamming points [5,21–25]—μ is often
surprisingly independent of dimensionality and polydispersity
[10]. And even though different interaction potentials may
yield different exponents for a given quantity, this dependence
can often be trivially accounted for [3,7,20]. Importantly, once
a jammed state is reached for a given potential, the resulting
configuration is an equally valid jammed state for any other
potential [16].

However broad this universality class may be, it does not
prevent μ from depending on whether the jamming point is
approached either from below [i.e., from the undercompressed
(UC) phase, φ → φ−

J ] or from above [over-compressed (OC)
phase, φ → φ+

J ]. A salient example is pressure, P, which
scales as P ∼ |φ − φJ |±1 [10,26], i.e., μ± = ±1 as φ → φ±

J .
In the UC case, pressure thus diverges as density approaches
φJ , as found in granular materials or glass-formers made out
of infinitely hard particles [4]. Conversely, in the OC case,
pressure vanishes linearly as the packing fraction is brought
down to φJ , as found in soft-harmonic particles [10]. Another
important example is the average contact number, z. Simu-
lations of harmonic soft spheres, for instance, show that z
exhibits a discontinuity exactly as φ → φ−

J , and then grows as
z(φ) − z(φJ ) ∼ (φ − φJ )1/2 for φ > φJ [10]. This discontinu-
ity can be related to the condition that the number of contacts
in a configuration should exactly match its number of degrees
of freedom, i.e., the onset of isostaticity [3,7,27]. Recent stud-
ies have further verified the expected finite-size scaling of P, z,
and the bulk and shear moduli for a wide variety of potentials
in d = 2 and 3 [28,29]. A Widom-like scaling function has
further been derived for these variables as well as for the
configurational energy and shear stress [30]. Furthermore,
various studies have identified correlation lengths associated
to the characteristic length scales of vibrational response to
perturbations [31,32], the fluctuations in the number of con-
tacts [33,34], and the fluctuations of particle mobility [20], all
of which diverge at the jamming point. These observations for
thermodynamic variables and bulk properties provide some of
the strongest evidence in support of the critical nature of the
jamming transition.

Remarkably, some of the microscopic structural properties
of jammed configurations, such as the distributions of contact
forces and interparticle gaps, are also expected to exhibit
nontrivial critical scalings. In particular, in a jammed configu-
ration of N spherical particles with center positions {ri}N

i=1 and
diameters {σi}N

i=1, one can define a dimensionless gap between
any pair of particles, hi j = |ri−r j |

σi j
− 1, with σi j = (σi + σ j )/2.

Because jammed packings are disordered, gap values are ran-
domly distributed, but theoretical predictions [15] state that
the distribution of small gaps should scale as

g(h) ∼ h−γ , with γ = 0.41269 . . . . (1)

Similarly, the distribution of small contact forces is predicted
to scale algebraically, p( f ) ∼ f θ , but initial reports found
a strong dependence of θ on dimensionality and jamming
protocol, in apparent contradiction with the theoretical expec-
tation [35]. This paradox was resolved by recognizing that
two different types of forces contribute in this regime [16,35].

Opening the contact between a pair of particles can indeed
give rise to two distinct responses: (i) a localized rearrange-
ment of neighboring particles or (ii) a displacement field that
extends over the whole configuration, without decaying with
distance. The former is associated with a buckling motion,
and hence remains localized; the latter is associated with a
correlation length of the same order as the system size, and
hence is a clear example of the criticality of jammed packings.
Considering these two types of forces separately yields two
power laws with different exponents,

p( f�) ∼ f θ�

� , with θ� � 0.17, (2a)

p( fe) ∼ f θe
e , with θe = 0.423 11 . . . , (2b)

for localized and extended excitations, respectively. The abil-
ity of MF theory [1,6,15] to predict the nontrivial values of
γ and θe is considered a major analytical success. MF theory,
however, does not directly predict θ�, because bucklers are an
intrinsically low-dimensional feature [16], and are therefore
absent from the d → ∞ description. The critical exponents
of gaps and contact forces are also of utmost importance
because they are associated with the mechanical stability of
jammed packings. By considering the displacement field that
follows opening one of the two types of contacts as well as the
ensuing closure of gaps to form stabilizing contacts, a pair of
inequalities between γ , θ�, and θe can be derived [17,36],

γ � 1 − θ�

2
, (3a)

γ � 1

2 + θe
. (3b)

MF theory values as well as numerical simulations indicate
that both inequalities are in fact saturated, implying that
jammed packings are marginally stable [36,37]. This result is
consistent with the MF description, which always locates the
jamming point within a critical Gardner phase that emerges
deep in the glass phase and is characterized by the emergence
of marginally stable states [1,6,13,15,23,38].

The picture that coalesces from putting together the exact
MF description with the critical scalings for thermodynamic
and other variables, and from considering the robustness of
numerical experiments for several dimensions and for differ-
ent protocols [4,6,11,16], suggests that the jamming transition
of spherical particles properly defines a universality class. We
now know that this class should encompass a broad range of
problems and models beyond spherical particles, including
the perceptron [39,40], neural networks [41–43], statistical
inference [44], and the SAT-UNSAT transition in continuous
constraint satisfaction problems [45,46]. Recent works have
shown that universality persists even when the interactions are
nonanalytic, for instance, due to discontinuous forces [40,47].

Yet, a careful analysis of the values of θ�, θe, and γ

inferred from numerical simulations has not systematically
been carried out. Conducting such an analysis is especially
important considering that packings of slightly polydisperse
crystals are reported to exhibit a microstructure characterized
by exponents that differ considerably from those of Eqs. (1)
and (2) [48,49]. Additionally, recent works have shown that
many of the salient features of spherical packings depend
sensitively on particle shape. For instance, introducing even an

014102-2



FINITE-SIZE EFFECTS IN THE MICROSCOPIC … PHYSICAL REVIEW E 104, 014102 (2021)

infinitesimal amount of asphericity changes the universality
class [50,51], in which the isostatic condition no longer holds.
An assessment of the extent of the jamming universality class
and an accurate test of its many theoretical predictions are
therefore in order [38].

In this work we systematically analyze the finite-size scal-
ing of the distributions of interparticle gaps and contact forces.
These distributions are one of the fundamental consequences
of the presumed nontrivial critical behavior of jammed pack-
ings, hence their testing is a key step toward rigorously
validating a whole set of critical properties. Although a similar
analysis has been carried out for the perceptron [52] and for
the gaps distribution of a two-dimensional binary mixture
[50], no systematic result exists for jammed packings of spher-
ical particles nor for amorphous packings with other sources
of disorder. Here, in addition to analyzing the most common
cases of jammed configurations, i.e., two-dimensional (2d)
polydisperse and 3d monodisperse packings, we consider two
additional sets of jammed packings: (i) polydisperse spheres
in a crystalline FCC structure and (ii) Mari-Kurchan (MK)
hard spheres with random shifts distributed uniformly over
space [53]. By examining the impact of different sources of
disorder, we attempt to define precisely which are the most ro-
bust features of jamming criticality, and thus better demarcate
its physical universality. The rest of this paper is organized
as follows. In Sec. II we describe the models used and the
algorithms employed to produce jammed configurations and
extract the relevant structural information, i.e., the interpar-
ticle gaps, h, and contact forces associated with extended,
fe, and localized, f�, displacement fields. We also explain
how finite-size effects in the distributions of these structural
variables are considered. In Sec. III we present a detailed
analysis of the finite-size effects in jammed configurations of
monodisperse spherical particles in 3D, where we reveal the
striking contrast of such effects on the distributions fe and h.
Then, in Sec. IV we present a similar analysis for the other
types of systems considered, finding important differences
with the results for d = 3 spherical systems. We nevertheless
argue that most of these differences can be explained from
the other scaling corrections described in Sec. II D. Because
theory and previous numerical studies suggest that fe and h are
critically correlated across the whole system, we first consider
these two quantities. The distribution of localized forces, f�,
associated with buckling effects is expected to be independent
of system size, hence its analysis is postponed to Sec. V. A
discussion and brief conclusion are given in Sec. VI.

II. NUMERICAL METHODS, MODELS SYSTEMS,
AND FINITE-SIZE SCALING

In this section, we describe the numerical techniques used
to produce jammed sphere packings, coming from either
the OC or the UC phase. Studying independently these two
regimes is useful because—as for other critical points—there
is no reason a priori to assume that the scalings from above
and below φJ are the same. Because each of these two phases
is identified with different materials, namely granular mat-
ter (from the UC regime) and glasses, foams, and colloids
(from the OC phase), this verification is an important test
of materials universality. We also describe the other models

considered, which are chosen to better appraise the extent of
the jamming universality class. The methodology employed
to analyze the system-size dependence on the distributions of
the microstructural variables, Eqs. (1) and (2), is also detailed.

A. Jammed states from the OC phase

We first consider three-dimensional configurations of N
spheres of equal diameter, i.e., σi j = σ ∀i, j = 1, . . . , N , in
a cubic box under periodic boundary conditions. In a certain
sense, this choice is the minimal model with which to produce
jammed packings. Lower-dimensionality systems inevitably
crystallize unless polydisperse mixtures are used, but ordering
can be avoided for monodisperse spheres in d � 3. Sphere po-
sitions then serve as the only source of disorder. Given the set
of vectors of positions {ri}N

i=1, the jamming point starting from
the OC phase is obtained for the harmonic contact potential,

U
({ri}N

i=1

) = ε

2

∑
i, j

(σ − |ri − r j |)2 �(σ − |ri − r j |), (4)

where ε is a constant that defines the energy scale and � is
the Heaviside step function. Hence, a pair of particles only in-
teracts if there is an overlap between them. Starting in the OC
phase with φ > φJ [φ = 1.02 in two dimensions (see below)
and φ = 0.792 in three dimensions] and a uniformly random
distribution of spheres in a square box, a series of energy
minimization steps and packing fraction reduction steps are
performed until the system has just a single state of self stress,
which is where jamming criticality occurs [17,21,36,54]. Such
a state is characterized for having one contact above isostatic-
ity, i.e., when the total number of constraints in a system,
Nc, matches its number of degrees of freedom, Ndof . A single
state of self stress is required for critical jamming in order to
achieve a finite bulk modulus [28,55]. Put differently, the sys-
tem density is an additional variable that needs to be fixed, and
thus requires one additional contact above isostaticity [56].
At a given density the FIRE algorithm, a damped dynamics
method, is used to achieve force balance in the configuration
[57]. The energy of the configuration is then calculated and
the known scaling relation, U ∝ (φ − φJ )2 [16], is used to
determine by how much the sphere radii should be uniformly
decreased to reduce the system energy by a fixed fraction.
After several iterations of this procedure, the packing has
precisely Nc = Nsd − d + 1 contacts where Ns is the number
of stable particles and thus Ndof = d (Ns − 1) corresponds to
the number of degrees of freedom in a system under periodic
boundary conditions. A small fraction of particles, termed
rattlers, remain unconstrained at jamming and do not con-
tribute to the overall rigidity of the packing [16,29,56], thus
Ns = N − Nr , with Nr denoting the amount of rattlers in a
given configuration. In a d-dimensional system, these rattlers
can be identified as particles with fewer than d + 1 contacts.
Although Nr changes from one configuration to another, Nr/N
always lies within a small range of ∼2-3%. Only the total
number of particles in the system, N , is thus reported. After
removing rattlers, the dynamical matrix [7] is used to ensure
that the packing is jammed. This algorithm is implemented
in the pyCudaPacking software using general purpose graphi-
cal processing units and quad-precision calculations [58–60].
Given that our configurations are not subject to any external
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force, once the jamming point is reached the Nc dimensional
vector of forces magnitudes, f , is obtained as the nonzero
solution to the set of linear equations that impose the condition
of mechanical equilibrium [16]:

ST f = 0; Sαk
〈i j〉 = (δ jk − δik )nα

i j . (5)

In this last equation, 〈i j〉 with i < j is the index of a contact,
ni j is the unit contact vector pointing from particle i to j, and
α = 1, . . . , d indexes its components. (The single state of self
stress that results guarantees that f is unique). Contributions
associated with localized buckling displacements, f�, are then
separated from those that produce extended excitations, fe, us-
ing the fact that (with high probability) bucklers are particles
with z� = d + 1 contacts [16]. The set { f�} is thus taken as the
set of forces applied on particles with z� contacts, while { fe}
is its complement.

B. Jammed states from the UC phase

For configurations initially in the UC regime, an infinitely
hard-sphere potential is used and a combination of molecular
dynamics (MD) and linear optimization algorithms are em-
ployed to approach φJ from below. More precisely, we start
from a low-density configuration of particles with random
positions and use event-driven MD with a Lubachevsky-
Stillinger (MD-LS) growth protocol [22] to increase the
(reduced) pressure up to P = 500. This first step is per-
formed with a fast compression rate in order to avoid any
partial crystallization and is then followed by a second,
much slower, growth protocol until P � 107. In this way, the
MD-LS protocol compresses a low density fluid into an out-
of-equilibrium glass at a very high pressure, while still closely
following the (phenomenological) equation of state [4,22,23].
The high pressure configuration is then used as input for
the sequential linear programming (LP) algorithm used in
Refs. [61,62] to produce jammed packings. At each step, the
LP algorithm finds the optimal rearrangement of particles that
maximizes their radius, considering a linearized version of the
nonoverlapping constraint between any pair of particles. On
convergence, this algorithm produces a jammed configuration,
because neither particle displacements nor size increases are
possible. This approach also allows to easily build the full net-
work of contacts at jamming, because genuine contact forces
can be identified, up to a proportionality factor, from the active
dual variables associated to the nonoverlapping constraints.
As with the OC phase, rattlers are removed and only systems
with a single state of self stress are considered. Moreover,
it is easy to show that the contact forces thus obtained also
satisfy Eq. (5), and therefore our hard-sphere packings are
well-defined jammed states.

Using either of the two methods to reach jamming we find
that all our configurations have a similar final density, φJ ≈
0.64, which corresponds to inherent structures of systems
that are quenched relatively quickly [1,3–5,7,10,21,22,61–
63]. (Fluctuations around the average value of φJ decrease
for larger system sizes, as first reported in Ref. [10]). Some
remarks about the differences of the two protocols are nev-
ertheless in order. First, note that independently of how a
jammed packing is realized, it must be a minimum of the

corresponding free energy [15]. And indeed, both of our
protocols are implemented to perform such minimization,
although in markedly different circumstances. For instance,
critical jamming occurs in the T → 0 limit when coming
from the OC phase, so the free energy is minimized by find-
ing a energetic ground state of the configuration. The FIRE
algorithm allows to perform such energy minimization, and
by iteratively decompressing the system until overlaps van-
ish, we guarantee that the final configuration is also valid
when T = 0. For hard spheres, by contrast, only the entropic
contribution to the free energy matters, because the interac-
tion energy is necessarily zero and the kinetic contribution is
trivial. Correspondingly, our MD-LS + LP method proceeds
by maximizing the entropy of the configuration as the free
volume per particle vanishes [64]. But it should be mentioned
that harmonic [65] and logarithmic contact potentials [63,66]
can also be used to produce jammed packings from the UC
phase. In our case, however, the two different protocols we
implemented to reach free energy minima are conceived to
follow the specific route of the systems we aim to model: (OC)
thermal glass formers, soft particles, etc., or (UC) grains, rigid
particles and other athermal systems.

C. Other models of jammed packings

We also investigate the jamming point of three other
models.

1. Polydisperse disks

Previous studies strongly suggest that the upper critical
dimension of the exact MF theory is d = 2 [16,17,29]. How-
ever, as mentioned above, particles of different sizes must then
be utilized to inhibit crystallization. An additional source of
disorder is thus introduced by extracting particle radii from a
log-normal distribution to achieve a polydispersity—defined
as the ratio of standard deviation to mean—of 20%. This
was achieved by generating a Gaussian random number, R,

with parameters μ = 0 and σ =
√

ln(0.22 + 1) and setting
the radii to be eR. (Note that the radii distribution parame-
ters should not be confused with the particle diameter used
in monodisperse systems). These soft harmonic spheres are
initially in the OC regime, and thus the FIRE-based algorithm
is used to bring configurations to their jamming point via
repeated quenching and decompression steps.

2. Crystalline polydisperse spheres

Removing randomness from particle positions while keep-
ing size polydispersity as the main source of disorder is
achieved by generating jammed packings on the sites of a
regular face-centered cubic (FCC) lattice. Radii are drawn
from a log-normal distribution with a polydispersity of 3%.
These nearly crystalline packings are brought to critical jam-
ming using the quenching and decompressing FIRE-based
protocols for soft spheres initially in the OC phase. Although
this type of system displays many of the features associated
with traditional glasses [48], its distributions of forces and
gaps often markedly differ from those predicted by MF theory
[48,49]. By using a system with a different crystalline symme-
try we aim to quantify such discrepancy.
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3. Monodisperse MK spheres

The MK model is a MF reference given that, by con-
struction, the properties of MK configurations are roughly
independent of dimension. Specifically, we consider d = 3
systems of monodisperse spheres that interact according to a
randomly shifted distance, D(ri, r j ) = |ri − r j + Ai j |, where
Ai j is a quenched random vector drawn uniformly from the to-
tal system volume. Introducing random shifts, Ai j , suppresses
almost completely correlations due to short loops on the in-
teraction graph. Even if D(ri, r j ) = D(r j, rk ) = σ it is very
unlikely that D(ri, rk ) � σ . In other words, while for particles
interacting via the usual Euclidean distance neighbors of a
given particle are likely also neighbors, in the MK model,
almost certainly, they are not. Because this property is also the
case for systems using the Euclidean distance in the d → ∞
limit, it is expected that the microscopic structural properties
of MK jammed configurations should follow the MF theory
predictions closely. Besides, it has already been verified that
the MK model exhibits several features of more usual glass
formers [67], that a Gardner transition also occurs deep in
the glass phase [68], and that contact number fluctuations
are critically correlated at jamming [34]. Consequently, any
deviation from MF predictions observed for this system can
safely be attributed to finite-size corrections, which makes
the MK model a particularly useful reference to explain the
contrasting scaling effects in the distributions of gaps and
contact forces (Sec. VI). For this model, we consider hard
sphere configurations initially in the UC phase, and use the
MD-LS and LP algorithms to reach their corresponding jam-
ming point, after going through the liquid and glass phases
[67,68].

D. Expected finite-size scalings

To ensure that we sampled all the systems of a given
type with the same accuracy, MN independent configura-
tions are produced for a fixed value of N , such that data of
N × MN � 106 particles is obtained. (Specific values for each
system are given below). Forces and gaps can then be studied
across many orders of magnitude, and finite-size corrections
can be systematically identified. Because testing for power-
law distributions using logarithmic binning of the probability
density function (pdf) leads to poor comparisons (due to
the loss of resolution when grouping data in a single bin
to produce a smooth trend [69]), the cumulative distribution
function (cdf) is considered instead. Note that if a random
variable x is distributed according to a pdf of the form ρ(x) ∼
xα for α > −1, then its cdf follows c(x) ∼ x1+α .

When fitting a distribution to empirical data it should be
considered that even if x ideally follows such a distribution
all the way down to x → 0, finite sampling inevitably leads
to deviations. Here the situation is further complicated by our
consideration of marginals of correlated variables. Gaps and
forces distributions of finite N configurations are indeed prone
to exhibit deviations from their expected form due to both
finite sampling and system-wide correlations. Fortunately, in-
troducing a scaling function, as is usually done in the study
of critical phenomena [70,71], can account for both effects,
and hence the dependence of the cdf on system size can be
carefully teased out.

To derive the size scaling of the distributions of x, we first
note that in a sample of size N � 1, we can estimate the
order of the smallest value observed in the data, xmin, from the
probability mass assigned to the extremes of the distribution:∫ xmin

0
ρ(x)dx ∼ x1+α

min ∼ 1

N
. (6)

In other words, xmin can be estimated from the weight assigned
to the extremal value of the empiric cdf, whence it follows
that xmin ∼ N−1/(1+α). Note that strictly speaking in this last
equation N should be replaced by Nc when analyzing, for in-
stance, the distribution of contact forces. However, given that
Nc ∼ dN and that we are mostly concerned with the scaling
exponent, we can safely neglect the associated proportionality
constants. The behavior of the gap distribution is expected to
be similar, in that the amount of particles almost in contact
should be self-averaging. Next, we follow the traditional path
for analyzing size scaling and write the pdf as

ρ(x) ∼ Nβ ρ̃
(
xN

1
1+α

)
, (7)

where ρ̃ is the scaling function of the pdf such that ρ̃(x) ∼ xα

for x � 1. The exponent β can be easily determined by re-
quiring that ρ(x) exhibits no N dependence for a large enough
value of x, given that if N

1
1+α x � 1 the data should follow the

expected power-law scaling for any N . We thus get that β =
− α

1+α
, whence the expressions used for the scalings studied

in Ref. [52] are recovered. For the cumulative distributions,
repeating the above analysis for c(x) ∼ N−δ c̃(xN

1
1+α ) gives

c̃(x) ∼ x1+α , and it immediately follows that δ = 1, whence
the relevant scaling relation is

c(x) ∼ N−1 c̃
(
xN

1
1+α

)
. (8)

Using the correct α should remove any dependence on N .
Data for different system sizes should then be rescaled such
that they follow a common curve, c̃. Finding a good collapse
of the curves for different N thus indicates that deviations
from the expected power laws fall outside the thermodynamic
limit, but are not caused by the variables following a different
power-law scaling. Additionally, showing that the system size
influences the cdf of a given variable strongly evinces that
such a variable is correlated across the whole system. Hence,
an upper bound to the correlation length can then be estimated.

We want to stress that for microscopic variables of jammed
configurations the situation is conceptually different from that
of standard critical phenomena, because the systems are al-
ready at the critical point. We here do not investigate how
the distributions of contact forces and gaps converge to their
expected distributions as we move away from φJ , but instead
analyze how the system size affects the range over which
power-law scalings are followed. As a result, most techniques
for size scaling analysis [i.e., computing γ (N ) and θe(N ) by
isolating the nonsingular contribution of an appropriate scal-
ing function away from φJ and then extrapolating to N → ∞]
are inapplicable. Equation (8) can nevertheless be used to
estimate the scaling functions of the cdf of gaps and forces
obtained by integrating Eqs. (1) and (2), respectively.

At the upper critical dimension d = 2, we expect a loga-
rithmic correction to the size scaling law [29,72–74],

ρ(x) ∼ xα (− ln x)ξ , for x � 1. (9)
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We can then estimate xmin as∫ xmin

0
ρ(x)dx ∼ xα+1

min (− ln xmin)ξ ∼ 1

N
, (10)

leading to

xmin ∼ N− 1
1+α (− ln xmin)−

ξ

1+α ∼ N− 1
1+α (ln N )−

ξ

1+α . (11)

Repeating the same argument as above, we get

c(x) ∼ N−1(ln N )−ξ c̃
[
xN

1
1+α (ln N )

ξ

1+α

]
, (12)

where the prefactor is chosen such that c(x) does not depend
on N for x � xmin. For the cases considered in this work, no
theoretical prediction exists for the value of ξ , and hence it
here serves as a fitting parameter.

We consider yet another correction to Eq. (7) that can also
be derived from MF theory. Given that jammed configurations
have one extra contact than Ndof (see Sec. II A), the power
laws of the microstructural critical variables should be cut
off at very small values [45,50,75]. MF theory predicts that
interparticle gaps are distributed as h−γ only for values larger
than a cutoff h� ∼ δz

1
1−γ , where δz is the excess of contacts in

a system with respect to isostaticity. In our case, δz ∼ 1/N , so
instead of Eq. (1) the pdf describing the distribution of h reads

g(h) ∼
{

N
γ

1−γ g0

(
hN

1
1−γ

)
, hN

1
1−γ � 1

h−γ , hN
1

1−γ � 1
; (13)

where g0(x) ∼ 1 for x � 1 [50]. Analogously, for extended
forces Eq. (2b) should be replaced by

p( f ) ∼
{

N
−θe
1+θe p0

(
f N

1
1+θe

)
, f N

1
1+θe � 1

f θe , f N
1

1+θe � 1
, (14)

where p0(x) ∼ 1 for very small values is to be expected.
Equations (13) and (14) are indeed consistent with Eq. (7) and,
repeating the same arguments as above, it is straightforward
to derive that both regimes can be captured by Eq. (8) using a
single scaling function, such that

c̃(x) ∼
{

x, x � 1
x1+α, x � 1

. (15)

That is, using the correct α in Eq. (8) accounts for size
effects that give rise to deviations from the main power-
law scaling as well as the appearance of the linear regime
in the left tails. By plotting Nc as a function of N

1
1+α x

both corrections can thus be tested from a single scaling
collapse.

III. FINITE-SIZE EFFECTS IN d = 3 SYSTEMS

We first consider systems of monodisperse particles in d =
3 by generating, for each N , MN independent packings, such
that N × MN � 2.2 × 106 (5.5 × 106) particles are consid-
ered when the jamming point is approached from the UC (OC)
phase. Figure 1 shows the distributions of fe obtained coming
from below [UC, Fig. 1(a)] and from above [OC, Fig. 1(b)].
Comparing the results with the theoretical prediction for the
power-law scaling reveals an outstanding agreement over at
least three decades. More importantly, no visible signature of
finite-size corrections can be detected over the range of N

considered. To verify more stringently the absence of finite-
size effects, we attempted to collapse the different curves by
rescaling the extended forces and their cdf following Eq. (8),
obtaining the curves reported in Fig. 1(c). This last figure
evinces that the same critical distribution of forces is found
independently of whether the jamming point is generated from
the UC or OC regimes. Yet, it is clear that our packings exhibit
an excess of very small forces [an effect more noticeable
when jamming is reached from below; see Fig. 1(a)], echoing
earlier observations [16,17,48,52]. Note that the scaling of
Eq. (8) does not remove these deviations from the predicted
distribution. Note also that these deviations roughly occur for
the same scaled force, N

1
1+θe fe � 1. It is therefore likely that

forces are subject to size effects caused by the onset of a
second power law, p( f ) ∼ 1 [see Eq. (14)]. We get back to
this point below.

Figure 2 presents the corresponding cumulative distribu-
tions of gaps. The data are also in very good agreement with
the predicted scaling of Eq. (1), independently of the direction
in which jamming is approached. More importantly, the distri-
butions of h are strongly dependent on system size. In contrast
to p( fe), the scaling correction given in Eq. (8) using the
MF value of γ precisely corrects for such effects over almost
seven orders of magnitude [Fig. 2(c)]. The growing deficit
of very small gaps as the system size decreases is another
manifestation of the cutoff of the main power law of g(h). It
leads to a secondary linear regime, as given in Eq. (13), that is
in agreement with the numerical results [Fig. 2(c)]. This indi-
cates that distances between nearby spheres are significantly
modified in finite-size configurations and, consequently, so
is the distribution of gaps. This phenomenon is physically
interesting. Heuristically, the finite N influence on g(h) can
be understood by relying on the marginal stability of jammed
packings. In the thermodynamic limit, a system has always
enough space to relax any perturbation caused by a contact
opening, and hence is always able to reaccommodate parti-
cle positions—even if this requires bringing many of them
infinitesimally close to each other—in order to guarantee sta-
bility. In a finite system, by contrast, no such unconstrained
relaxation can take place. Rearranging an extensive fraction
of particles necessarily influences the pair of spheres involved
in the contact just opened. There is therefore a certain scale,
below which the occurrence of small gaps is disfavored. If the
system were further relaxed, then at least one extra contact
would form.

At this point, we wish to stress that our results demonstrate
the existence of two different types of finite-size corrections
to the distributions of extended forces and gaps. The first
is a consequence of large-scale correlations and can thus be
readily taken into account by the scaling of the cdf given in
Eq. (8). Although this correction is practically absent in the
forces distribution, for g(h) it is the main source of deviation
from the theoretical prediction. The second is a consequence
of the critical scalings of Eqs. (1) and (2b) being cut off at
very small values. This effect, which is very likely related
to the excess contact with respect to Ndof (see Sec. II D),
affects both microstructural variables and can also be teased
out reasonably well using the scaling advanced in Eq. (8). We
get back to this point in Sec. IV, after having considered its
signature in other models.
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FIG. 1. Cumulative distributions of extended contact forces associated with extensive excitations of monodisperse configurations of
frictionless spheres for different system sizes N , as their jamming point is reached (a) from below (UC) and (b) from above (OC). To
better distinguish between the two different regimes, results belonging to the UC (OC) phase are identified by circular markers (solid lines).
(c) Rescaling (a) and (b) according to Eq. (8) clearly collapses the data. The red dashed line corresponds to the power-law scaling of Eq. (3b),
and shows an excellent agreement between the MF predictions and our numerical results. The coincidence of results from the UC phase and
OC phase for various N confirms that θe is the same when jamming is reached from either direction. In the left tail of the distributions of panel
(c) we also include a comparison with the linear scaling (cyan dotted) expected for very small values, following Eq. (14). When put together,
these two behaviors match the predictions given in Eq. (15).

Before concluding this section, it is worth emphasizing that
our numerical results are in excellent agreement with the MF,
d → ∞ predictions for the power-law scaling of the distribu-
tions of both the extended forces and the interparticle gaps.
These results confirm that the jamming criticality of these
microstructural variables is robust with respect to changes in
the systems dimensionality, all the way down to d = 3, in
agreement with earlier albeit less accurate studies [11,17,35].
Because results from both OC and UC phases superimpose
onto each other, we further conclude that the critical behavior
is controlled by the same exponents on both sides of the
jamming point.

IV. FINITE-SIZE EFFECTS IN OTHER
DISORDERED SYSTEMS

We next consider the finite-size scaling of the force and gap
distributions at jamming for the three other models mentioned
above: (i) polydisperse disks, (ii) crystalline polydisperse
spheres, and (iii) monodisperse MK spheres. From Sec. III,
we understand that the direction of approach to the jamming
point does not influence on the criticality of microstructural
variables, so only one such direction is considered for each

mode. The first two approach the jamming point from the OC
phase with N × MN � 5 × 106 particles, and the third from
the UC phase with N × MN � 106.

Despite the marked differences between the three models,
their distributions of fe all follow the MF predictions very
closely (Fig. 3). In Fig. 3(a), the d = 2 packings show a
very good agreement with the cdf derived from Eq. (2b) over
most of the accessible range. In Fig. 3(b), results for the FCC
symmetry also follow the expected scaling, but because its
onset takes place at smaller forces, the range of consistency
with the MF power-law scaling is correspondingly reduced.
In Fig. 3(c), jammed configurations produced using the MK
model exhibit a noticeable, albeit small, dependence on N ,
but this dependence can be removed by rescaling the cdfs
according to Eq. (8) using the MF value of θe [see Fig. 3(d)].
Interestingly, all three systems display an excess of very small
contact forces for fe � 10−4, similarly to what was found for
d = 3 configurations (see Sec. III). Our results suggest that
this effect is due to a crossover to a second regime, in which
forces are distributed uniformly, as given by Eq. (14). A com-
parison with the corresponding linear behavior in each panel
of Fig. 3 presents a reasonably good agreement, in support of
this hypothesis. A more careful analysis would nonetheless

014102-7



PATRICK CHARBONNEAU et al. PHYSICAL REVIEW E 104, 014102 (2021)

FIG. 2. Cumulative distributions of interparticle gaps for the same configurations as in Fig. 1, as their jamming point is reached (a) from
below (UC) and (b) from above (OC). (c) Rescaling (a) and (b) according to Eq. (8) shows that finite-size corrections can be accounted for in
all cases. For comparison, the power-law scaling derived from MF theory, Eq. (1), is also shown (red dashed line). Once again, the fact that
datasets from both phases, i.e., UC (markers) and OC (lines), neatly superimpose confirms that the exponents at the jamming point are the
same, independently of how φJ is approached. Additionally, the secondary scaling regime g(h) ∼ 1 of Eq. (13), also predicted by MF theory,
can be observed for very small values. Its associated linear cdf is shown (cyan dotted line). These two regimes confirm that the scaling function
agrees with our prediction in Eq. (15).

be needed to single out the true form of the left tails
of p( fe).

We next consider the finite-size effects on the distribution
of gaps of these three systems. From the spacing between
different curves in d = 2 packings, it is clear that such ef-
fects are pronounced [Fig. 4(a)]. Rescaling these distributions
following Eq. (8) with MF value for γ yields a collapse
[Fig. 4(b)] that is not as good as for their d = 3 counter-
parts. Section II D anticipated this discrepancy on the basis
that d = 2 is the upper critical dimension for jamming [29],
and hence a logarithmic correction should be included, as in
Eq. (12). As shown in Fig. 4(c), with such correction the data
can be robustly collapsed using the MF value of γ .

By contrast, gaps distributions in the FCC jammed configu-
rations are best described by a completely different exponent.
Figure 5 clearly shows that [Fig. 5(a)] finite-size corrections
are important, but that [Fig. 5(b)] a poor collapse is obtained
when curves are rescaled using Eq. (8) with the MF value
of γ . Using [Fig. 5(c)] a different γFCC � 0.33, however,
satisfactorily captures the N dependence. This confirms pre-
vious reports that γ is changed in presence of an underlying
crystalline structure [48,49]. Reference [49] even found that γ

depends on the system polydispersity, through the variance of
the particle sizes. It is important to stress that finding a smaller

γ is not merely a matter of scrupulous curve fitting. It also
positively violates the marginal stability relations, Eqs. (3),
and thus indicate that near-crystals belong to a different uni-
versality class than standard amorphous packings of spheres.
We comment further on this point in Sec. VI.

Figure 6 presents the gap distributions for the MK model.
Here, again, finite-size corrections to g(h) are significant, but
now taking the MF value of γ in Eq. (8) yields a very good
collapse, as expected from the MF nature of the model. It is
important to note that although individual distributions of h
suggest that a smaller exponent would better fit the curves
in Fig. 6(a), doing so worsens significantly the quality of
the scaling collapse. This situation is typical of many critical
scalings in finite-N systems [70,71]. The most reliable way
to determine critical exponents remains the finite-size scaling
analysis. It is however surprising that the individual distribu-
tions in the MK model, which by construction should be closer
to the MF solution, do not display the right gap exponent. In-
deed, we observe from Fig. 6(b) that the scaling variable using
the MF value of γ is the correct one [data do collapse when
plotted versus h̃ = N1/(1−γ )h], but the slope of the curves
in the range covered in our simulations (10−3 < h̃ < 103) is
not that predicted by MF theory. An important concern is
thus whether this deviation is due to finite-size corrections or
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FIG. 3. Cumulative distributions of fe for jammed configurations of (a) d = 2 polydisperse disks packings, (b) polydisperse spheres with
a FCC crystalline structure, and (c) packings using the d = 3 MK model. Panel (d) depicts the same data from the MK model, rescaled
according to Eq. (8); see text for details. Data in the upper (respectively, lower) panels were produced as jamming was approached from above
(respectively, below). The expected power law, Eq. (2b) is shown (red dashed lines), as is the secondary linear regime, see Eq. (14) (cyan dotted
lines).

whether it indicates a failure of the MK model. In order to
resolve the matter, we used the expected form of the scaling
function, Eq. (15), to construct a fitting function, F (h̃), that
assumes the correct behavior of the scaling function for large
values of h̃; more specifically, F (h̃) = [(ah̃)d + (bh̃1−γ )d ]1/d .
The fitting function hence only depends on three parameters
and fulfils the condition that F (h̃) ∝ h̃ for h̃ � 1, while the
MF form, h̃1−γ , is recovered for large values of the scal-
ing variable. Fitting F (h̃) to the largest system size results
gives the black line in Fig. 6(b), which clearly interpolates
nicely between both regimes. Therefore, the hypothesis that
results for larger MK systems would eventually follow the MF
power-law cannot be confuted. The convergence of the slope
of the scaling function to the predicted value is nevertheless
extremely slow, especially relative to that of other models
[see, e.g., Figs. 2(c) and 5(c)] or to the distribution of forces
in this same MK model [see Fig. 3(d)]. One must thus reach
very large values of the scaling variable in order to measure
the right slope. More precisely, in the inset of Fig. 6(b) we
report the difference of γ and our estimation of local γMK

from the local slope as a function of N . Around h̃ = 1, the
slope clearly differs from the MF prediction, but even when
h̃ ∼ 102 very large system sizes are needed for it to approach
the theoretical exponent. This deviation results in an apparent
size dependence of the global exponent, i.e., γMK = γMK(N ),
that is substantially more pronounced than for other models
at similar N . Such discrepancy likely results from the MK
system being fully connected. In contrast with their sparse
counterparts, fully connected models indeed require much

larger system sizes for thermodynamic power-law scalings to
be visible [76–78]. This feature can be physically understood
by recalling that the introduction of random shifts results in
neighbors of a given particle (very likely) not being neighbors
themselves. A particle can thus have many more contacts than
normally allowed in Euclidean space. For instance, it is not
uncommon (∼1%) for particles at jamming to have as many
as 12 contacts (the d = 3 kissing number) or more. In general,
particles are thus surrounded by many more particles–both
actual and near contacts–than usual hard spheres. Addition-
ally, jamming densities in this model are much higher than
can be achieved with hard spheres. Using our MD-LS + LP
algorithm, as well as planting [68] to speed up the growing
protocol, results in jamming packing fractions φJ,MK � 3.1
(cf. φJ,3D � 0.64). Now, given that φ ∼ σ 1/d , our MK con-
figurations are made out of particles nearly twice as big as
those of standard hard spheres. The combination of these two
effects is that particles in MK packings are surrounded by a
cluster of many relatively large neighbors. The effective size
of the system being drastically reduced, finite-size corrections
are correspondingly more pronounced. We thus conclude that
gaps in the MK model will probably follow the MF power-
law scaling, as expected, but only at system sizes orders of
magnitude larger than those considered here. In practice the
finite-size effects are so important in the distribution of gaps
in the MK model that its MF nature is, perhaps paradoxically,
a strong limitation to study its MF behavior.

Looking at the whole set of gap distributions, an interest-
ing feature is the robust emergence of a regime of uniform
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FIG. 4. (a) Cumulative distributions of h of jammed configura-
tions of d = 2 polydisperse disks and different size N . (b) Scaling
of the different curves following Eq. (8) using the MF value of γ .
(c) Same scaling as in (b) but including a logarithmic correction as
in Eq. (12). Choosing ξ = −2.5 then best collapses the results. For
reference, the expected power-law scaling is shown (red dashed line),
as is the linear regime given by Eq. (13) at very small arguments
(cyan dotted line).

distribution at very small gaps, in a way entirely analogous
to the distributions of extended contact forces. We argued in
Sec. II D that this truncation of the leading power-law scaling
in the distributions likely follows from the combined effect of
the additional state of self stress and the system sizes being
finite. All the models consistently exhibit this behavior and
show very good agreement with the associated linear scaling
[see Figs. 2(c), 4(c), 5(c), and 6(b)]. The invariance of this
secondary power-law scaling with dimensionality, inherent
order or other system properties is reassuring, albeit some-

FIG. 5. (a) Cumulative distributions of h for jammed configura-
tions of polydisperse spheres with an FCC structure and different
N . Scaling the different curves according to Eq. (8) using (b) the
MF value of γ and (c) γFCC = 0.33. For a clearer comparison, the
trend for the expected power-law exponent (red dashed line) and for
γFCC (pink dashed-dotted curve) are shown. For FCC configurations,
unlike for d = 2 systems, the collapse obtained with the MF value of
γ is poor over the whole interval considered of the scaled variables
[see Fig. 4(b)]. Note that when γFCC is used, a linear scaling at very
small arguments is recovered (cyan dotted line).

what surprising, given that the leading power-law scaling is
more strongly affected by these same effects. The universality
of this secondary scaling has been previously predicted [45]
for all models that can be mapped to jamming of spherical
particles, and it has been shown to occur even for nonspherical
particles [50], provided that their jammed states remain suffi-
ciently close to isostaticity. Such robustness can be understood
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FIG. 6. (a) Cumulative distributions of h for jammed configu-
rations of d = 3 MK systems of different size N . (b) Same data
but collapsed using the scaling in Eq. (8). Such scaling indicates
that γMK = γ , in agreement with MF theory, although finite-size
corrections are particularly important for this model (see main text
for discussion). The MF (red dashed lined) and linear (cyan dotted
line) behaviors are indicated, as well as the fitting function (solid
black) based on Eq. (15), as discussed in the text. Inset: Difference
between the MF γ and the local slope estimate at two different values
of the scaling variable, 1 (crosses, dashed) and 100 (squares, solid).
These results suggest that systems orders of magnitude larger would
be needed to recover the pure MF power law (see main text for
details).

in part by considering that isostaticity is a global property
of the system related to a matching between constraints and
degrees of freedom, and not to the specific distributions of
its microstructural variables. Because we have restricted our
analysis to packings with exactly Nc = Ndof + 1, the ubiquity
of the linear left tails in our distributions supports the hypoth-
esis that the form of g0(x) [Eq. (13)] and p0(x) [Eq. (14)] is
determined by the single state of self stress alone, and not
by the inherent structure. It is then remarkable that the same
size scaling also seems to capture the behavior of the extremal
part of the distributions of gaps and of extended forces, albeit
not as evidently for the latter. Our findings are therefore in
agreement with Eq. (15).

V. CUMULATIVE DISTRIBUTIONS OF f�

The last microstructural variable we consider is the set of
localized forces. Figure 7 presents the probability distribu-
tions for all our results. As expected, this quantity exhibits
no clear finite N signature for any of the models, even though
some dispersion around the expected behavior is observed in
the left tails of d = 3 monodisperse and MK configurations,
[Figs. 7(a) and 7(d), respectively]. This behavior is expected
because the set { f�} corresponds to contact forces acting on
bucklers, for which opening a weak contact mostly results
in localized displacement field [16,17]. Because opening any
of the contacts associated with a buckler only has a non-
negligible effect over a few particle layers away from its
origin, it is reasonable to assume that their properties should
be insensitive to N , or to any border or periodic effects.

An intriguing finding is that only the cdf of d = 3 monodis-
perse and d = 2 polydisperse particles follow the known value
of θ� � 0.17 [see Figs. 7(a) and 7(b)]. By contrast, FCC
structures give rise to no obvious power-law scaling. The FCC
arrangement induces strong spatial correlations that seem to
suppress the appearance of localized forces, as seen from the
smaller slope of the cdf. Observing a distribution with an ex-
ponent different from θ�, or actually failing to scale as a power
law, is in striking contrast with many other models, and even
other crystalline structures [48]. It nonetheless echoes very
recent reports of a dependence of θ� on geometry for other
near-crystals [49]. These considerations highlight the need for
further assessment of which aspects of jamming criticality are
indeed universal, which are more generically conserved [79],
and which disappear in the presence of long-range spatial
constraints.

Although a power-law scaling is also obtained for MK
configurations, the best fit to the data is achieved with a unit
slope, i.e., θ�,MK = 0 [see Fig. 7(d)]. Localized forces are
thus distributed uniformly in this model. A careful analy-
sis suggests that this unexpected distribution is in tune with
the spatial properties of MK packings. First, note that even
though bucklers follow a different pdf, selecting particles with
z� = d + 1 contacts is still a valid selection criterion. (If their
contribution had not been isolated, then the remaining forces
would not follow the MF power-law scaling given in Eq. (2b),
as it does in Fig. 3(c), whereas if both kinds of forces are con-
sidered together, their joint pdf scales as ≈1.1, which differs
from the analogous quantity for standard hard spheres [16]).
Second, analyzing the distribution of dot products between
contact vectors as in Ref. [62] reveals that particles with z�

contacts in MK packings have a very similar distribution as
those in standard hard sphere packings. Bucklers thus mainly
give rise to a localized response thanks to them having three
nearly coplanar contacts and one nearly orthogonal force. In
order to understand why localized forces are uniformly dis-
tributed, we follow Ref. [17], which showed that the two types
of contact forces are related to two types of floppy modes:
extended forces are related to floppy modes that can couple
strongly to external perturbations, and hence their response is
bulk dominated; and buckling forces are associated to floppy
modes of a rapidly decaying displacement field. (The value
of θ� ≈ 0.17 was estimated from the statistics of displace-
ments in the latter). There is therefore a strong connection
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FIG. 7. Cumulative distributions of f� for jammed packings of (a) d = 3 monodisperse spheres, (b) d = 2 polydisperse disks, (c) poly-
disperse spheres with FCC structure, and (d) d = 3 MK model. Solid lines (circular markers) denote data obtained from configurations from
the OC (UC) phase. For reference, the expected power law, cdf( f ) ∼ f 1+θ� , with θ� = 0.17, is shown (red dashed lines), and in panel (d) the
power-law fit found by inspection for the MK model, cdf( f ) ∼ f , i.e., θ�,MK = 0, is also shown (pink dotted line). See text for more details.

between the distribution of forces in bucklers and the particle
displacements their floppy modes produce. Now let us assume
that in an MK packing we open a buckling contact, 〈i j〉,
between particles i and j, in order to describe the associated
displacement field. In particular, let us focus on the remain-
ing contacts of any of these particles, say i. Because of the
random shifts, the other particles touching i are (very likely)
not constrained by each other nor by the other particles near
i. Instead, the displacement of each neighbor of i is limited by
its own contacts, which are not neighbors themselves, and are
typically far apart. By the same token, the effect on the rest of
particles in contact with j is determined by secondary contacts
that—with high probability—are distant from each other and
from 〈i j〉. As a result, opening a buckling contact produces
a small series of uncorrelated displacements. No particular
length scale is hence favored over any other. Because of the
close relation between localized forces and displacements just
mentioned, it is natural for f� to be uniformly distributed.

Before closing this section, we note that the distributions
of f� for the FCC and MK packings violate the stabil-
ity condition related to local excitations given by Eq. (3a).
We comment further on this point in Sec. VI. For now,
we simply note that broader classes of disorder need to be
considered when studying the criticality associated with lo-
calized contact forces, even though their finite-size effects are
unimportant.

VI. DISCUSSION

For clarity, we synthesize our results in Table I. The first
three rows, which consider the power-law scaling of the pdfs
in Eqs. (1) and (2), assess the jamming criticality associated
with microstructural variables for different types of systems.
Recall that not only were different models considered, but so
was the direction of approach to the jamming point. The sys-
tematic corroboration of the nontrivial distributions of forces
and gaps for fully disordered systems at jamming completely
supports the description derived from the exact MF theory.

Systems with an underlying FCC symmetry, however, exhibit
marked discrepancies. Our result thus validate earlier reports
that crystalline structures fall outside the jamming universality
[48,49], even though some of its critical features are conserved
[79].

Our main finding is the contrasted system-size dependence
of the distribution of gaps and contact forces, as summarized
in the last two rows of Table I. Size effects in p( fe) are
practically nonexistent for all models, dimensionality, and
interaction type, while g(h) exhibits clear and systematic sig-
natures of finite-N deviations from the expected power-law
scaling. Logarithmic corrections to g(h) are further observed
in two-dimensional systems. We emphasize that testing for
such size scalings not only rigorously assesses the critical
scaling and its exponents [70,71], but also provides key insight
into the length scale of their correlations. Hence, we conclude
that the MF exponents for all gap distributions and the fe

one in the MK model are correct. Yet—leaving aside for
the moment the MK results—a second and more informative
conclusion is that the distribution p( fe) reaches its thermody-
namic limit behavior at smaller values of N than g(h). Two
different correlation lengths, ξ fe and ξh, therefore characterize
the relevant length scales of correlations of contact forces
and gaps, respectively. This finding is rather unexpected, be-
cause the critical behavior of both quantities is controlled by
the onset of isostaticity at the jamming transition. Moreover,
theoretical approaches [1,14,45] suggest that forces and gaps
can be studied from a unified viewpoint (essentially by con-
sidering forces as the zero limit of negative gaps), and thus
they should share a common correlation length, ξ . Naturally,
in the thermodynamic limit ξ should diverge at the jamming
transition, thus signaling system-wide correlations between
microscopic variables. Our results for finite-size systems, by
contrast, suggest that correlations in gaps and forces have
different length scales, namely ξh � N1/d � ξ fe . The fact that
no known relation for ξ has been put forward (nor for ξh

or ξ fe for that matter) partly obfuscates further analysis. A
simple resolution could be to assume that both ξh and ξ fe
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TABLE I. Summary of our main results for the various properties and models considered. In the heading we also indicate if the respective
jamming point was reached from the under- (UC) or over-compressed (OC) phase. In the first three rows a checkmark (�) denotes that the
corresponding theoretical prediction was verified and a cross (✗) that it was not. In the last two rows symbols denote whether the size scaling
was verified. Results that contradict MF predictions, or results from previous studies, are highlighted using bold face.

Property d = 3 Monodisperse d = 2 Polydisperse FCC MK
UC and OC OC OC UC

p( fe) with θe = 0.42311 � � �(but small range) �
g(h) with γ = 0.41629 � � ✗: γFCC � 0.33 �
p( f�) with θ� = 0.17 � � ✗: no power law ✗: θ�,MK = 0
Eq. (8) scaling for forces ✗ ✗ ✗ �(but small effect)
Eq. (8) scaling for gaps � �[Eq. (12)] � (using γFCC) �

are proportional to ξ , but with a prefactor that is much larger
for the former than for the latter. Considering that forces and
gaps are usually treated on an equal footing from the perspec-
tive of the SAT-UNSAT transition in the perceptron [39,40],
constraint satisfaction problems [45,75], and neural networks
[43] as well as from the point of view of marginal stability
in amorphous solids [36,37], the disparity in their correlation
lengths is nevertheless surprising.

The MK results also fit into this description if we consider
that their very high densities and connectivity reduce the ef-
fective system size, as discussed in Sec. IV. Observing the
scaling of Eq. (8) for the cdf of fe is thus a manifestation of
the smaller effective volume (for a similar N), which confirms
that finite-size corrections for p( fe) are present at jamming,
but disappear for relatively small system sizes. The signifi-
cantly more pronounced N dependence of the distributions of
h [Figs. 3(c) and 6(b)] thus supports our finding that ξh � ξ fe .

Interestingly, our results further suggest that the marginal
stability bounds for the exponents, as expressed in Eqs. (3),
should be modified when different types of disorder are
present. For instance, our findings along with other works
[48,49] evince that these inequalities are prone to be vi-
olated when crystalline lattices are used to generate the
jammed packings. The inherent geometry of jammed con-
figurations therefore plays a significant role in formulating
general stability criteria. Because the bounds in Eq. (3)
were derived [17,36,37] assuming, implicitly, that particles
positions are uncorrelated, it should not be overly sur-
prising that γFCC violates both relations. It nevertheless
suggests that, despite being likewise composed of frictionless
spheres, near-crystals are not part of the same universality
class.

The linear growth of cdf( f�) in the MK model is also at
odds with the stability condition of Eq. (3a). This finding is
more surprising because there is no long-range order in this
type of system. At the end of Sec. V we used the peculiar
geometry of these packings to suggest a physical explanation
for the uniform distribution of f�, but this reasoning does not
explain why the stability condition between γ and θ� is ap-
parently violated. Given the drastic difference in the inherent
structures of the FCC and MK packings, they highlight the
need for more studies to better understand the role played by
disorder in determining how the response to external pertur-
bations is related to spatial correlations between particles in
jammed systems.

The most persistent observation was that all cumulative
distributions of both gaps and extended forces behave in a
seemingly linear fashion at very small arguments, in agree-
ment with the MF predictions, p0 and g0 in Eqs. (13) and
(14), respectively. Such a cutoff of the main power-law scal-
ing is due to the extra contact of isostatic configurations
and its effect in the scaling function can be captured us-
ing the same scaling transformation we performed for the
main power-law scaling [see Sec. II D, especially Eq. (15)].
It has been previously reported for the gaps distributions
of disks packings [50], but we are not aware of analo-
gous findings in any other model or for the fe distributions.
As discussed at the end of Sec. IV, our results suggest
that scalings caused by the additional contact with respect
to isostaticity are more robust against changes in the type
of disorder and have a similar characteristic scale in both
types of microstructural variables. However, because of un-
dersampling of the left tails of these distributions, a more
stringent analysis would need to be carried out to verify that
p0(x) ∼ g0(x) ∼ 1 when x � 1. A previous work on the per-
ceptron [52] also reported a similar transition to a uniform
distribution of contact forces that depended on the type of
algorithm used to reach the jamming point, but given that we
have used two different algorithms to produce our packings,
it is unlikely that both could produce the same systematic
effect. This question is particularly interesting because it
would directly affect the robustness of jamming universal-
ity, albeit only for the very smallest forces and gaps. Yet,
given that the left tails of g(h) and p( fe) determine the
smallest gaps and contact forces, accurately describing their
true distribution is key to assessing the stability of jammed
packings away from the thermodynamic limit. We neverthe-
less leave this and other related issues as topics for future
consideration.

Data relevant to this work have been archived and can be
accessed from the Duke Digital Repository [80].
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