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Measured values of ϕj

In Table I we show our measued values of ϕj . these values are used in calculating ∆ϕ.

Table I: Measured values of ϕj in dimensions 2-10.

d 2 3 4 5 6 7 8 9 10
ϕj 0.85 0.65 0.46 0.31 0.20 0.13 0.078 0.049 0.029

MEAN FIELD PREDICTIONS OF PREFACTORS

Mean Field Prediction of Pressure vs Packing Fraction

Mean field theory predicts that pressure scales with packing fraction as follows [S1]:

P̂ = Ĉ(ϕ̂− ϕ̂j) (S1)

where Ĉpϕ is a constant, and the hats over P and ∆ϕ signify that the quantities are scaled such to be fixed in the
infinite dimensional limit, as follows:

P̂ =
P ∗

ρd
(S2)

ϕ̂ =
2d

d
ϕ (S3)

where ρ is the number density, N
V , and P ∗ is the pressure which is calculated with assumed unit particle diameter.

This relates to our pressure, P , as follows:

P =
ϕ

ρ

1

d2
P ∗, (S4)

where the factor of ϕ
ρ unwraps their assumption of unit particle diameter, and the factor of 1

d2 comes from their
potential, which explicitly contains a dimensional term:

U∗(r) =
ǫd2

2

(r

ℓ
− 1

)2

Θ(ℓ− r) . (S5)

We can thus rewrite equation S2 in terms of our pressure P :

P̂ =
d

ϕ
P, (S6)
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and therefore equation S1:

d

ϕ
P = Ĉ

2d

d
(ϕ− ϕj) (S7)

P =
ϕ

d
Ĉ
2d

d
∆ϕ (S8)

P =
1

d
Ĉϕ̂j(∆ϕ) (S9)

P =
1

d
Ĉpϕ(∆ϕ). (S10)

Where, noting that ϕ̂j and Ĉ are constants in the infinite dimensional limit, we combine them as Ĉpϕ. Thus mean
field predicts a simple 1/d scaling of the prefactor between pressure and excess packing fraction.

Mean Field Prediction of Pressure vs Number Of Excess Contacts

The number of contacts, z, is predicted by mean field theory to have the form [S1]:

z

2d
= 1 + Ĉzϕ

√

ϕ̂− ϕ̂j (S11)

z

2d
= 1 + Ĉzϕ

√

2d

d

√

ϕ− ϕj (S12)

for some constant Ĉzϕ.
The number of excess contacts, δz, therefore is predicted to scale as follows:

δz

2d
= Ĉzϕ

√

2d

d

√

ϕ− ϕj (S13)

δz = 2dĈzϕ

√

2d

d

√

ϕ− ϕj . (S14)

Mean Field Prediction of Packing Fraction vs Number of Excess Contacts

By combining equations 10 and 14, we can also predict the relation between δz and P :

δz = 2dĈzϕ

√

2d

d

√

d

Ĉpϕ

P (S15)

= 2dĈzϕ

√

2d

Ĉpϕ

√
P (S16)

(S17)

where we define Ĉzp =
2Ĉzϕ√
Ĉpϕ

.

Excess Contacts vs Excess Packing Fraction Prefactor Scaling

From eqns 5 and 6 we can simply relate δz and ϕ as follows:

δz = Czϕ (∆ϕ)
1/2

(S18)

where clearly,

Czϕ = Czp

√

Cpϕ. (S19)
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Figure S1: Measured excess contacts scales with the square root of excess packing fraction for systems from d = 2 to
d = 10 (red circles). Black lines show the fits for Czp using eqn S18. For our fits, we ignore data at high pressure
and low contact number as in figure 2. Dotted lines show the extension of our fits beyond the fitted range. Inset
shows the measured values of Czϕ (blue circles), which scale in agreement with the mean field prediction eqn S14

using measured values of with Ĉzϕ ≈ 0.83. Additionally, to note consistency we show that our measured values of
Czϕ agree well with values calculated from our measurements of Cpϕ and Czp using eqn S19 (black x’s).

In figure S1, we show this scaling seperately for each dimension. We fit each line to eqn S18 to find the values of the
prefactor Czϕ in each dimension, the values of which are shown in the inset. These values agree well with both the
mean field prediction above 3D, shown as a black line, and our calculated value from Czp and Cpϕ, shown as black
x’s in figures 1 and 2.

Dimensional Dependence of Force Moment Ratios

In figure S2a we show that the ratio of force moments does not depend strongly on dimension. This empirical fact
may seem at odds with previous reports of how the low-force part of the distribution differs from its mean-field form
in low dimensions [S2, S3]. The low-force part of the distribution has P (f) ∝ fθ, where θ ≈ 0.17 in d = 2 smoothly
rises to a d = ∞ value of θ ≈ 0.42. The high-force behaviour decays like an exponential or a stretched exponential;
thus, we have computed the theoretical value of this moment ratio for distributions of the form P (f) ∼ fθe−f/f0 and

P (f) ∼ fθe−f2/f2

0 , as shown in figure S2b. We find that neither of these assumed distributions quantitatively predicts
the measured moment ratio for the known values of θ, but they do show that the known variation in θ should not
make us expect a large variation in this moment ratio.

Accounting for Polydispersity in Pressure vs. Packing Fraction Scaling

To account for the case with varying spring constants we also form the matrix of inverse spring constants
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Figure S2: Dimensional dependence of force moment ratios
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(a) Dimensionless moment ratio of first and second
moments of σf shows no dimensional dependence
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(b) Neither the force distribution fθe−f/f0 (blue) nor the

distribution fθe−f2/f2

0 (red) predicts a strong θ

dependence for the relevant moment ratio

k−1 =
1

2ε







σ2
ij

. . .

σ2

kl






. (S20)

and the projection operator onto the states of self stress

S =

N∆z
∑

i=1

|si〉 〈si| . (S21)

In terms of these quantities, the bulk modulus may be written as [S4–S6]

∂2E

∂V 2
=

1

V
〈E|S

(

S
(

k−1
)

S
)−1

S |E〉 . (S22)

In the one SSS approximation, we can evaluate the two projected quantities that we need to evaluate equation S22.
Equations 10 and 12 give

S |E〉 = 〈s0|f〉 |s0〉 =
〈r|f〉

d
√

〈f |f〉
|s0〉 =

√
Z

〈rf〉
d
√

〈f2〉
|s0〉 , (S23)

and equations S20 and 12 give

Sk−1S = |s0〉 〈s0|k−1|s0〉 〈s0| = |s0〉
〈σ2f2〉
2ǫ〈f2〉 〈s0| (S24)

(

Sk−1S
)−1

= |s0〉
2ǫ〈f2〉
〈σ2f2〉 〈s0| (S25)
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Furthermore at lowest order in P we have |r〉 = |σ〉, and we may assume Z ≈ dN . Thus, equation S22 reduces to

K =
2Nε

dV

〈σf〉2
〈σ2f2〉 , (S26)

and thus via equation 9:

Cpϕ =
2

d

〈σf〉2
〈σ2f2〉 . (S27)

Prestress Comparison

It has recently been suggested the relationship between prestress and number of excess contacts collapses perfectly
when compared across dimensions [S7]. We define prestress e as in ref. [S7] as:

e = (d− 1)

〈−V ′(rij)

rijV ′′(rij

〉

ij

(S28)

and expected to scale as:

δz = Czee
1

2 (S29)

because it is proportional to pressure near the jamming transition [S7]. In figure S3, we examine the collapse of scaled
excess contacts with prestress (fig. S3b), and compare it to the collapse of excess contacts scaled by the mean field
prediction with pressure (fig. S3a). In figure S3b we see that the collapse with prestress is not quite perfect - there is
a clear upward trend. This stands in contrast to the inset of figure S3a, which shows Ĉzp to be nearly constant above
three dimensions.

Figure S3: Comparison of scaled excess contacts with pressure and prestress.

(a) Scaled excess contacts scales with the square root of
pressure as in figure 2. However, with excess contacts

scaled by the expected mean field prediction, eqn. 8, the
data collapse onto a single line. The inset confirms the

collapse, showing Ĉzp to be nearly constant.

(b) Scaled excess contacts scales with the square root of
prestress for systems from d = 2 to d = 10. Black lines
show the fits for Cze using eqn S29. The fits ignore high

and low pressure data as in figure 2. Lower inset shows the
measured values of Cze which have a clear upward trend.
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In fact, close to jamming so that r ≈ σ and Z ≈ Nd, our dimensionless pressure P as defined in equation 4 is
related to the prestress by

P =
V̄p

εV d

∑

i,j

fij · rij (S30)

=
V̄p

εV d
Z〈fijrij〉ij (S31)

=
2ϕZ

d

〈

rij
σij

(

1− rij
σij

)〉

ij

(S32)

=
2ϕZ

d

〈

−rijV
′(rij)

σ2
ijV

′′(rij

〉

ij

(S33)

≈ 2
ϕJ

d− 1
e. (S34)

Thus, our better-fitting form for the z − P relationship amounts to the statement that

∆z

2d
= Ĉϕ

√

d

d− 1

√
e. (S35)

Thus our scaling forms agree with the statement of reference [S7] in the infinite-d limit, although we see better fit
with our form in low dimensions.
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