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No known analytic framework precisely explains all the phenomena observed in jamming. The replica
theory for glasses and jamming is a mean-field theory which attempts to do so by working in the limit of
infinite dimensions, such that correlations between neighbors are negligible. As such, results from this
mean-field theory are not guaranteed to be observed in finite dimensions. However, many results in mean
field for jamming have been shown to be exact or nearly exact in low dimensions. This suggests that the
infinite dimensional limit is not necessary to obtain these results. In this Letter, we perform precision
measurements of jamming scaling relationships between pressure, excess packing fraction, and number of
excess contacts from dimensions 2–10 in order to extract the prefactors to these scalings. While these
prefactors should be highly sensitive to finite dimensional corrections, we find the mean-field predictions
for these prefactors to be exact in low dimensions. Thus the mean-field approximation is not necessary for
deriving these prefactors. We present an exact, first-principles derivation for one, leaving the other as an
open question. Our results suggest that mean-field theories of critical phenomena may compute more for
d ≥ du than has been previously appreciated.
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Introduction.—Granular materials exhibit universal
properties regardless of the material properties of the
individual grains [1–3]. The jamming transition is a critical
point near which properties such as pressure, packing
fraction, or number of excess contacts, among others, scale
as power laws. Scaling theory summarizes and condenses
these power law relationships, but no first-principles theory
of jammed systems at finite dimensions exists. The replica
mean-field theory of glasses and jamming has been shown
to be exact in the infinite dimensional limit [4,5]. To do so it
relies on the assumption that there are no correlations
between neighbors, fundamentally at odds with low-
dimensional systems. As such, mean-field predictions
should not be expected to hold in low-dimensional jam-
ming, and some results, most notably the packing fraction
at jamming, deviate from the mean-field predictions [2,6].
However, despite the fact that low-dimensional systems
have highly correlated neighbors the scaling relations
are precisely the same as those found in infinite dimensions
[7–9]. Many other results predicted by the mean field have
also been observed in low-dimensional jamming, sug-
gesting that they may be provable without the mean-field
approximation [2,3,10–13].
Here, we move one step further in the comparison

between low-dimensional jamming and mean-field jam-
ming by probing not only scaling relations but also
prefactors between a handful of properties: pressure P,
excess contacts δz, and excess packing fraction above
jamming Δφ. We demonstrate the continued success of the
mean field in describing low-dimensional systems by

quantitatively verifying the mean-field predictions for these
prefactors. Thus, the mean-field approximation is over-
zealous: one need not have vanishing correlations in order
to obtain these results. In this spirit we provide a first-
principles proof of the relation between pressure and excess
packing fraction free of the mean-field assumptions. These
results call out for proofs for all of the other universal
relations of the jamming transition.
Background.—Granular materials undergo a jamming

transition at a critical packing fraction φj. The number of
force bearing contacts between grains jumps abruptly from
zero to the minimum number sufficient to support global
rigidity and thus global pressure Zc. In a packing of N
frictionless, spherical particles in d dimensions, Zc ¼
Ndþ 1 − d [1,14].
We limit our study to spherical particles interacting

through a harmonic contact potential given by

Uij ¼ ε

�
1 −

jrijj
σij

�
2

Θ
�
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�
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where ε is the energy scale, rij is the contact vector between
particles i and j, σij is the sum of the radii of particles i and
j, and Θ is the Heaviside step function. Thus, the total
energy U ¼ 1

2

P
ij Uij. From this potential, the forces

between particles can be calculated as
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We compute a unit and dimension independent pressure
using the microscopic formula [7,15]

P≡ −
V̄p

ε

dU
dV

¼ V̄p

εVd

X
i;j

fij · rij; ð3Þ

where V is the volume of the system and V̄p is the average
particle volume.
For soft spheres the packing fraction φ can be increased,

leading to new contacts and an increased pressure. We thus
consider three natural quantities that measure distance from
jamming: (i) excess packing fraction, Δφ ¼ φ − φj,
(ii) excess contacts per particle, δz ¼ ðZ − ZcÞ=N, where
Z is the number of contacts, and (iii) pressure P. The
relationships between these quantities are predicted by
mean-field theory as [5]

P ¼ CpφΔφ; ð4Þ

δz ¼ CzpP1=2; ð5Þ

with prefactors Cpφ and Czp, which are functions only
of spatial dimension [7]. These and other scaling relation-
ships have been previously explained by approximate
theories [16–19] and computationally confirmed in low-
dimensional jamming [1,7,8,14]. They are summarized
concisely by the scaling theory of the jamming transition
[9]. The scaling exponents in d ≥ 2 match those in mean
field, suggesting that the transition behaves like a critical
point with upper critical dimension du ¼ 2. Moreover,
mean-field theory predictions of these prefactors can be
derived as [5,20]

Cpφ ¼ 1

d
Ĉpφ; ð6Þ

Czp ¼ dffiffiffiffiffi
2d

p Ĉzp; ð7Þ

where Ĉpφ and Ĉzp are finite constants in the d → ∞ limit,
which have not yet been explicitly calculated. Note that
these relations are presented in a particular choice of units
in the literature. We include details of the conversion to our
dimensionless units in the Supplemental Material [21].
A priori, it is not expected that these predictions will apply
in low dimensions, in which the mean-field assumption is
not warranted. Even above upper critical dimensions,
mean-field theories are not generally expected to correctly
compute prefactors, or even the purportedly universal
amplitude ratios. Beyond scaling exponents, to our knowl-
edge, the critical cluster shape in percolation and related
phenomena [22,23] and the Binder cumulant in the Ising
model [24–26] are the only quantities which are known to
be equal to their mean-field values above the upper critical
dimension. Even though these prefactors for jamming

scaling relationships have been measured and reported
[7,27], because they are not expected to be equal to their
mean-field values they have not received substantial
theoretical attention. An approximate calculation of the
related prefactor between the shear modulus and number of
excess contacts has been performed in three dimen-
sions [18].
Computational methods.—We use pyCudaPacking [2], a

GPU-based simulation engine, to generate energy mini-
mized soft (or penetrable) sphere packings. We do so for
number of particles N ¼ 8192–32 768 and dimension
d ¼ 2–10. Our results suggest that N ¼ 8192 is large
enough to avoid finite size effects in d < 9, which we
have verified in d ¼ 8 by comparing our packing at N ¼
8192 with one at N ¼ 16384, finding no deviation. For
d ¼ 9 and d ¼ 10we use system sizes of 16384 and 32768,
respectively. The particles are monodisperse, except in two
dimensions in which we use equal numbers of bidisperse
particles with a size ratio of 1∶1.4 to prevent crystallization.
The packings are subject to periodic boundary condi-

tions. We minimize the packings using the FIRE minimi-
zation algorithm [28] using quad precision floating point
numbers in order to achieve resolution on the contact
network near the jamming point.
Using the same methods as described in Ref. [29], we

start with randomly distributed initial positions, and apply a
search algorithm to create systems approximately logarith-
mically spaced in Δφ. At each step we use the known
power law relationship between energy and Δφ to calculate
an estimate of φj. We use this estimate to approximate Δφ
and determine the next value of φ in an effort to logarithmi-
cally space Δφ values. We then adjust the packing fraction
to this value of φ by uniformly scaling particle radii and
minimizing the system. We continue this process until the
system is nearly critically jammed, i.e., has exactly one
state of self stress. We then use the known power law
relationship between pressure and Δφ to fit the dataset and
precisely calculate φj (with error less than the smallest
value of Δφ) from which we calculate Δφ at each value
of φ.
Results.—Figure 1 shows the measured linear scaling of

pressure with packing fraction separately for each dimen-
sion. We fit the data to Eq. (4) to findCpφ, considering only
data close to jamming to avoid fitting to high pressure
deviations from the scaling power law. The measured
values of Cpφ are shown in the inset to confirm the 1=d
dimensional scaling predicted by mean-field theory in
Eq. (6). A fit to this scaling provides a value of Ĉpφ of 1.23.
Figure 2 shows the measured square root scaling of

excess contacts with pressure separately for each dimen-
sion. We fit the data to Eq. (5) to find Czp, the values of
which are shown in the inset. Beginning around three
dimensions, the values of Czp confirm the dimensional
scaling predicted by mean-field theory in Eq. (7), and a fit
to this scaling provides a value of Ĉzp of 0.74.
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The values of both Cpφ and Czp are roughly consistent
with values measured in previous studies [7,27]. It has been
recently suggested that the prestress, i.e., the normalized
ratio of the first and second derivatives of the potential as
defined in Ref. [30], is a better candidate to dedimension-
alize the relationship between pressure and excess contacts.
However, we find a substantially better collapse of our
expected form of pressure than with prestress. For more
details on prestress, see the attached Supplemental
Material [21].
Discussion.—The close agreement of our data with the

mean-field predictions in low dimensions suggests that the
mean-field assumption is not essential to derive these
scaling and prefactor relations. In the spirit of discovering
proofs for these relations free of the mean-field assumption,
we expand on an earlier calculation of the bulk modulus
scaling [17] to show that such a calculation can also explain
the scaling of Cpφ with spatial dimension and the precise
value of Ĉpφ.

From taking a derivative of Eq. (4), we see immediately
that Cpφ may be expressed in terms of the bulk modulus,
K ≡ Vðd2U=dV2Þ, at jamming:

Cpφ ¼ V̄pV

φε

d2U
dV2

¼ V
Nε

K: ð8Þ

We note that this approximation slightly overestimatesCpφ:
the apparently linear average stress-strain curves of jammed
packings are actually the average of many piecewise linear
curves with discontinuous drops in stress, thus the average
slope is slightly less than the instantaneous slope [31].
At the unjamming point, the linear response of the

system is that of a network of unstretched springs. Thus,
at lowest order in pressure the bulk modulus is that of an
unstressed spring network, which may be calculated in
terms of the “states of self stress,” vectors of possible spring
tensions, s ∈ RZ, which do not produce any net force on a
particle [17,32,33]. Here we explain how to carry out this
calculation for a monodisperse system in the unjamming

FIG. 2. Measured excess contacts scales with the square root of
pressure for systems from d ¼ 2 to d ¼ 10. Black lines show fits
for Czp using Eq. (5). For our fits, we ignore high pressure data as
in Fig. 1, and additionally exclude data with less than 40 excess
contacts to avoid fitting to small number fluctuations. Dotted lines
show the extension of our fits beyond fitted range. Lower inset
shows the measured values of Czp (blue circles), which scale in
agreement with the mean-field prediction Eq. (7), shown as a fit to
a black line and with Ĉzp ≈ 0.74. Upper inset shows measured
values of Ĉzp calculated from the measured values of Czp and
Eq. (7).While each prefactor is measured from a single system, the
prefactors for a second, identically constructed dataset were
calculated to be well within the bounds of the marker size.

FIG. 1. Measured pressure scales linearly with scaled excess
packing fraction for systems from d ¼ 2 to d ¼ 10. Measured
values for φj in our protocol are included in the Supplemental
Material [21]. Black lines show fits for Cpφ using Eq. (4). We
exclude from the fit data with Δφ=φj > 10−3, to avoid the effect
of larger overlaps causing deviations from this power law. Dotted
lines show the extension of fits beyond fitted range. Upper inset
shows the measured values of Cpφ (blue circles) to scale in
agreement with the mean-field prediction Eq. (6), shown as a fit
to a black line with Ĉpφ ≈ 1.23. Moreover, they are in precise
agreement with predicted values from Eq. (14) (marked with
black ×’s). Lower inset shows measured values of Ĉpφ calculated
from the measured values of Cpφ and Eq. (6). While each
prefactor is measured from a single system, the prefactors for a
second, identically constructed dataset were calculated to be well
within the bounds of the marker size.
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limit; a correction for polydispersity is handled in the
Supplemental Material [21].
We begin by defining the set of “affine bond extensions,”

a vector E ∈ RZ giving the amount by which each bond
vector would increase under a unit volumetric expansion of
the system. In linear elasticity, this simply induces an
expansion of each length by 1=d, so,

El ¼ 1

d
rl; ð9Þ

where we emphasize that l indexes the contacts in the
system rather than the particles; rl is the distance between a
particular pair of particles.
In the case that all springs have the same spring constant

k (e.g., monodisperse packings), the bulk modulus may be
written as the projection of these affine moduli onto the
states of self stress [17,32,33]. At jamming, there is only
one state of self stress, and so the bulk modulus may be
computed exactly using the projection onto only this one
state of self stress [17],

K ¼ k
V

�XZ
l¼1

s1;lEl

�2

: ð10Þ

In the near jamming limit, this one special state of self
stress exists all the way down to the jamming point and can
be expressed in terms of the vector of physical force
magnitudes, f. For the packing to be in equilibrium, this
set of contact forces must produce no net force on every
particle, and thus by definition the vector f is always a state
of self stress. The projection defined above requires states
of self stress to be normalized, and so the state of self stress
may be expressed as

s1;l ¼ 1ffiffiffiffiffiffiffiffiffiffiffiP
lf

2
l

q fl ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
Zhf2i

p fl: ð11Þ

Furthermore, at lowest order in P we have r ¼ σ, and we
assume Z ≈ dN. Thus, Eq. (10) reduces to

K ¼ 2Nkσ2

dV
hfi2
hf2i ¼

2Nε

dV
hfi2
hf2i ð12Þ

and thus via Eq. (8),

Cpφ ¼ 2

d
hfi2
hf2i ; ð13Þ

for monodisperse spheres. The full calculation in the
Supplemental Material [21] shows that in the polydisperse
case this becomes

Cpφ ¼ 2

d
hσfi2
hσ2f2i : ð14Þ

We find that the distribution of contact forces does not
depend strongly on dimension, which we demonstrate and

discuss in the Supplemental Material [21], including
Refs. [29,34]. We thus predict the scaling of Cpφ to agree
with the asymptotic mean-field scaling. Because this proof
does not invoke the mean-field assumption, we expect this
scaling to be correct in all dimensions. Moreover, we are
able to calculate each value of Cpφ by measuring the ratio
of force distribution moments. These values are calculated
as in Eq. (14), and are shown in Fig. 1 to precisely predict
the values of Cpφ.
Conclusion.—The mean-field theory of jamming pre-

dicts both the scaling exponents and the dimensional
scaling of their prefactors. While the exponents have been
previously verified, we have demonstrated that even some
prefactors are well predicted in low dimensions by mean-
field theory. Although these prefactors should be consid-
ered especially sensitive to finite dimensional corrections,
we find the mean-field prediction to be exact in low
dimensions. Is this a generic phenomenon, or are the
quantities we have chosen to study in this work somehow
specially unaffected by finite dimensional correlations?
Experience with critical phenomena suggests that
although certain ratios of these prefactors (i.e., amplitude
ratios) may be universal, the prefactors themselves should
be both nonuniversal and challenging to compute, which
has led to them being neglected. Our results demonstrate
however that these prefactors may be computed exactly.
These results call out for other theories of jamming and
the glass transition which reproduce the mean-field results
without such assumptions, or perhaps for a deeper under-
standing of why certain mean-field computations may be
exact in finite dimensions. Additionally, our results
suggest that in traditional critical phenomena mean-field
theory may compute more for d ≥ du than has been
previously appreciated.
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