
PHYSICAL REVIEW E 106, 024903 (2022)

Hyperuniform jammed sphere packings have anomalous material properties
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A spatial distribution is hyperuniform if it has local density fluctuations that vanish in the limit of long
length scales. Hyperuniformity is a well known property of both crystals and quasicrystals. Of recent interest,
however, is disordered hyperuniformity: the presence of hyperuniform scaling without long-range configura-
tional order. Jammed granular packings have been proposed as an example of disordered hyperuniformity, but
recent numerical investigation has revealed that many jammed systems instead exhibit a complex set of distinct
behaviors at long, emergent length scales. We use the Voronoi tessellation as a tool to define a set of rescaling
transformations that can impose hyperuniformity on an arbitrary weighted point process, and show that these
transformations can be used in simulations to iteratively generate hyperuniform, mechanically stable packings of
athermal soft spheres. These hyperuniform jammed packings display atypical mechanical properties, particularly
in the low-frequency phononic excitations, which exhibit an isolated band of highly collective modes and a band
gap around zero frequency.
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I. INTRODUCTION

A statistically homogeneous distribution of points through-
out some volume is uniform in the sense that the probability
density function is constant throughout the volume. How-
ever, any finite sampling of this function will necessarily
contain density fluctuations at all length scales. By contrast,
a hyperuniform random distribution is one in which den-
sity fluctuations are completely suppressed at long length
scales [1,2]. While this phenomenon is most closely as-
sociated with crystalline and quasicrystalline patterns [3],
hyperuniformity also appears in disordered systems such as
the prime numbers [4,5] as well as in materials which are
both disordered and statistically isotropic [3,6–13]. Hyper-
uniformity can even be realized in amorphous packings of
circles and spheres [14–18]. Further, hyperuniform materials
could be used for creating efficient sensory networks with-
out the drawbacks of aliasing. These hyperuniform sensory
networks have even been shown to arise in nature, in par-
ticular in the distribution of photocells within the eyes of
chickens [19].

It is natural to suspect that all jammed sphere packings are
hyperuniform as the relaxation process by which such pack-
ings are formed will necessarily involve smoothing out local
density fluctuations relative to an uncorrelated initial configu-
ration [1]. However, recent numerical evidence demonstrates
that, for typical protocols used to create jammed packings in
silico, an emergent length scale appears at which this sup-
pression abates [15,20,21]. Further exploration of the link
between hyperuniformity and jamming could give rise to
deeper insights into the nature of the glass transition, and more
generally of geometric order within amorphous materials. In
this light, any protocol which can generate concrete examples
of hyperuniform materials has significant theoretical and nu-
merical applications.

II. CREATING HYPERUNIFORM PACKINGS

In order to create hyperuniform jammed packings, we
combine a protocol for creating mechanically stable sphere
packings with a straightforward protocol for transforming any
weighted point pattern into a hyperuniform point pattern. The
mechanism for transforming point patterns into hyperuniform
point patterns bears strong similarities with Ref. [17], which
proved that such point patterns will be type I hyperuniform.
This algorithm was developed in parallel with Ref. [18],
which demonstrated that thermal packings created in this way
are unusually stable. Just as in those works, our methods
involve an iterative process of rescaling individual particles
to a uniform local volume fraction within each Voronoi cell.
In Ref. [17] this process is applied once and the resulting
hyperuniform weighted point patterns are studied. In Ref. [18]
the resulting packing is then relaxed and the process is re-
peated until the standard deviation of the local volume fraction
distribution no longer changes. By contrast, in our work we
find a broad range of phase space above jamming in which
we can continue this process until the local volume fraction
fluctuations are brought identically to zero. Further, the area of
applicability is significantly different in that our work focuses
on the overjammed regime of soft-particle packings, which
allows us to directly explore the implications on mechanical
properties for exactly hyperuniform sphere packings. As a
technical advancement, in this work we introduce a process to
simultaneously perform the relaxation (energy minimization)
and the iterative rescaling of radii, resulting in a significant
increase in speed and efficiency of this algorithm.

A. Mechanically stable sphere packings

Packings are simulated as sets of N spherical particles each
in a cubic periodic bounding box of unit volume. Particles
have radii ri and positions �xi, and interact through a harmonic
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FIG. 1. The cells fully (light orange) and partially (orange)
within a circular region. (a) In a periodic tessellation, which is
hyperuniform, the variance within a sampling window is introduced
only from the cells on the window’s boundary. (b) In the tessellation
of a Poisson point pattern, variance arises from variation in both the
bulk and the surface of the window, leading to uniform statistics. If,
however, the weight of each cell is made to be proportional to its
area, then there will be no density fluctuations in the interior and as
such it will follow hyperuniform statistics.

pairwise interaction:

U =
∑
i> j

1

2

(
1 − |�x j − �xi|

ri + r j

)2

�

(
1 − |�x j − �xi|

ri + r j

)
, (1)

where � is the Heaviside step function.
Packings are created from random starting positions at a

fixed packing fraction ϕ and then energy-minimized using the
FIRE algorithm until the packing reaches mechanical stabil-
ity [22]. These relaxation methods are chosen to approximate
a rapid quench from infinite temperature [23].

B. From weighted point pattern to hyperuniformity

Given a point pattern in d dimensions, we may describe
density fluctuations by considering the number of particles
which fall within an ensemble of similarly shaped window
functions. We define σ 2

l (r) to be the variance of the total
number to fall within the subset of windows sharing a length
scale r.

As illustrated in Fig. 1, a Poisson point pattern, or indeed
any sufficiently uncorrelated distribution, will have a vari-
ance which grows linearly with the mean number of points
and so will have σ 2

l (r) ∝ rd . Conversely, in any periodic or
quasicrystalline distribution, the only contribution to variance
within a sampling window comes from those unit cells which
are bisected by the window’s boundary, leading to a variance
which grows as the surface area σ 2

l (r) ∝ rd−1. Such a point
pattern is said to be hyperuniform. Within the context of
jammed packings, it is convenient to measure ϕl , the local
volume fraction within a region, instead of the number of par-
ticles within a region. As ϕl is proportional to the number of
particles divided by the volume of a region, this hyperuniform
condition may be recast in terms of the local packing fraction
by division by r2d . Thus, we find that the variance of local
packing fractions for normally distributed points scales as r−d

(a) (b) (c)

FIG. 2. Illustration of the Voronoi rescaling. (a) A mechanically
stable backing is generated and its Voronoi tessellation is computed,
shown in red lines. (b) The radii are rescaled (from dashed circles to
filled solid circles) so that each particle occupies a fixed fraction of
its Voronoi cell, making the system hyperuniform but disrupting the
mechanical equilibrium. (c) The packing is relaxed (from previous
positions in dashed circles to filled solid circles) back to mechanical
stability.

and the hyperuniform condition is now〈
ϕ2

l

〉 − 〈ϕl〉2 ∝ r−(d+1). (2)

This definition may be generalized to weighted point pat-
terns by considering the variance of the total weight within
the window function rather than the number of points. For
purposes of analyzing density fluctuations in granular pack-
ings, we idealize each particle as a Dirac delta distribution
at the particle’s center with weight equal to the volume of
the particle. This choice has been shown to not affect the
long-range correlations [15]. Thus we compute the density
distribution ρ as

ρ(�x) =
∑

i

πd/2

�
(

d
2 + 1

) rd
i δ(�x − �xi ). (3)

We propose a method to create hyperuniform packings
from conventional packings by iteratively resizing particles to
achieve uniform local density in the system, as illustrated in
Fig. 2. Similarly to work done by Morse et al. [24], we exploit
the geometric cell properties of the Voronoi tessellation in a
minimization scheme. We first turn the point pattern associ-
ated with the packing into a hyperuniform point pattern with
the following algorithm:

(1) Compute the Voronoi tessellation [25] associated with
the point pattern.

(2) Compute the volume of each cell in the tessellation.
(3) Assign to each point a new weight proportional to the

volume of the local cell.
In Fig. 3, we demonstrate the validity of this method for

creating hyperuniform distributions. We do so by applying
this Voronoi rescaling to a large number of Poisson points
in a periodic box. We note that although we use the Voronoi
tessellation, any tessellation with a well-behaved diameter
distribution should work equally well.

In the context of sphere packings, this process will change
each particle’s volume and thus the polydispersity of the
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FIG. 3. Fluctuations in local density, ϕl , in a cubic region plotted
against the side length s of the cubic region scaled by the typical
distance between nearest neighbors, rnn. Black circles show the mea-
sured density fluctuations for a rescaled Poisson point distribution
of 225 = 33 554 432 particles in 3 dimensions. The hyperuniform
power law with exponent −(d + 1) is shown as a solid black line.
The gray dashed line shows the power law distribution for a uniform
distribution, −d .

spheres. Even with a mechanically stable starting config-
uration, this Voronoi rescaling will generally result in a
mechanically unstable system. To generate a packing that is
both hyperuniform and mechanically stable, we must find a
fixed point of both rescaling and energy minimization.

To locate such a fixed point, we begin with mechanically
stable monodisperse packings in d = 3. The packings are then
alternately Voronoi rescaled and partially minimized through
a fixed number, 20, of FIRE minimization steps. This num-
ber is chosen to optimize the time needed to reach a fixed
point as the small refinements in position after about 20
steps are generally lost in the rescaling process until a fixed
point is found. We repeat this process until the unbalanced
body forces remain below our minimization threshold even
after rescaling. The scaling of this algorithm with system
size at a fixed density is similar to that of the FIRE energy
minimization algorithm alone and empirically found to be
O(N2). We find that such a procedure will almost always
converge to a fixed point that is a mechanically stable, hy-
peruniform packing. This process results in packings with
a final size polydispersity that is only 2% or 3% of the
mean. Note that this modest polydispersity is not responsible
for any of the novel behaviors examined below. Packings
created de novo with this size distribution have properties
essentially indistinguishable from our initial monodisperse
packings.

III. ANALYSIS

A. Convergence

The dynamics of our iterative algorithm are not monotonic
in energy, and explore a particularly high-dimensional con-
figuration space of positions and radii in which we expect
hyperuniform fixed points to be relatively rare. It is thus sur-
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FIG. 4. Maximum particle displacement in a 3D packing with
N = 1024 particles, initially prepared in monodisperse equilibrium
at ϕ = 0.7 as we apply our iterative rescaling protocol. Each iteration
consists of a Voronoi rescaling followed by a partial energy mini-
mization. This system shows typical qualitative behavior for systems
that converge to a fixed point.

prising that this algorithm would ever converge, much less as
robustly as it does.

We track the dynamics of iteration by measuring the max-
imum displacement, which provides an indication of this
convergence. Sufficiently far from the jamming point, we find
the behavior shown in Fig. 4: systems quickly enter a regime
of random motion within a consistent range of maximum
displacements. Eventually, the system (usually) falls into an
approximately exponential descent until the displacement be-
comes impossible to resolve numerically. This reduction in
displacement is connected to the existence of a fixed point,
and the exponential behavior is related to the local analyt-
icity of the energy landscape about that fixed point. Some
systems instead remain in a state of random motion for
a very long time, and limit cycles, while rare, have been
observed.

Over an ensemble of many similar realizations, we observe
that the probability of convergence approaches its maximum
exponentially. This can be understood by assuming that falling
into a fixed point is a Poisson process on the random walk
through configuration space. The long-time probability of
convergence depends on the parameters of the realizations,
and most sensitively on the packing fraction, which we illus-
trate in Fig. 5. While the characteristic time of convergence
increases mildly as the jamming transition ϕ j is approached,
the total probability of convergence decreases, carving out
a regime around the critical point in which locating fixed
points is at best computationally infeasible and at worst im-
possible. Larger systems show qualitatively similar behavior;
however we have not systematically studied the finite-size
scaling of this convergence when close to the jamming tran-
sition as the timescales involved rapidly diverge for larger
N. In order to ensure relatively quick convergence to fixed
points, we primarily focus on systems relatively far from
jamming.
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FIG. 5. Cumulative distributions of converged systems for a sam-
pling of packings with N = 256 particles at a range of packing
fractions from ϕ = 0.7 to ϕ = 0.66, approaching the jamming den-
sity ϕ j ≈ 0.64. Packings nearer to jamming converge less frequently,
and those that do converge do so more slowly. Larger systems show
qualitatively similar behavior.

B. Structure factor scaling

We define the weighted density in reciprocal space for a
given wave vector �k as

ρ(�k) =
N∑

i=1

rd
i ei�k·�x. (4)

The static structure factor for weighted points measures the
strength of density fluctuations at a given wave vector �k [26]
and is defined as

S(�k) = 1

N
ρ(�k)ρ(−�k). (5)

Any point pattern will have large fluctuations at short dis-
tances (large �k). Uniform point patterns will have nonzero
fluctuations even at very large distances (�k approaching zero)
whereas a hyperuniform point pattern will have vanishing
fluctuations [1].

In Fig. 6, we show that iteration of our constructive algo-
rithm suppresses long-range density fluctuations, as measured
by the average value of S(�k) for a set of packings. Of particular
interest is lim|�k|→0 S(�k) which must be zero when we reach a
hyperuniform fixed point. In the initial mechanically stable
packing we observe that S(�k) reaches a constant value as �k
approaches zero, indicating that it is not hyperuniform. We
consider the value of S(�k) at �kmin, where �kmin is the wave
number for which S(�k) takes its minimum value. After a single
iteration this value of S(�kmin) increases, because individual
iterations only perform partial minimizations, which initially
introduces density fluctuations. As iteration continues, how-
ever, S(�kmin) decreases, indicating that the system is becoming
hyperuniform. Near the fixed point, the functional form of
the structure factor resembles a power law S(�k) ≈ a|�k|3. That
this power law appears to be nonanalytical as �k goes to 0
is surprising in light of the results of Ref. [17] which show
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FIG. 6. (a) Averaged structure factor S(�k) shown against wave
vector magnitude |�k| scaled by the nearest-neighbor Poisson wave
vector knn for 13 packings of N = 65 536 particles in d = 3. Packings
are prepared initially in monodisperse equilibrium at ϕ = 0.8. The
structure factor for the initial configurations is shown as a gray
solid line. As we iterate our rescaling protocol, the average structure
factor is shown to evolve (colors ranging from blue to green to red).
(b) S(�kmin) shown against the number of iterations of our rescaling
protocol.

that hyperuniform point patterns derived from Voronoi tessel-
lations will have small-�k behavior that scales as either �k2 or
�k4. This discrepancy may arise from the fact that points in that
work were placed at the centroids of the Voronoi cells whereas
our particles are not constrained in that way. It is also possible
that S(�k) continues to steepen at smaller �k and thus approaches
an even power law. Nevertheless, this difference is worthy of
further study.

C. Mechanical properties

Packings generated by Voronoi iteration represent a con-
crete set of examples with which to explore the mechanical
properties of hyperuniform granular materials. The vibra-
tional density of states D(ω) for sphere packings above jam-
ming has been well characterized in previous work [27–30].
In Fig. 7(a), we show the density of states for both the ini-
tial packing and the hyperuniform final configuration. At the
densities explored in this work we observe, as expected, a low-
frequency plateau associated with the boson peak and then an
ω2 falloff at the lowest frequencies in our initial packings. The
final hyperuniform configurations, however, have a remark-
ably different density of states: the lowest frequency scaling
regime is entirely absent, replaced by an abrupt low-frequency
cutoff at a finite frequency forming a phononic band gap about
zero frequency. Above this gap, there is a discrete band of
modes which we refer to as “sloshing modes.” The high-
frequency behavior, however, remains largely unchanged.

Figure 7(b) shows the inverse participation ratio (IPR) as a
function of frequency, defined for a given eigenvector as

IPR =
∑

i ‖�vi‖4

( ∑
i ‖�vi‖2

)2 , (6)
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FIG. 7. Mechanical properties shown against frequency of vibra-
tional modes ω for initial packings (blue) and hyperuniform final
configurations (red). Sloshing modes, outlined in dashed gray lines,
are shown to be easily distinguishable and characteristically different
from the modes of a typical packing. Data are averaged over 22
packings with N = 8192 in d = 3 at ϕ = 0.7. (a) Density of states
D(ω) shows the band gap around zero frequency and the band of
sloshing modes in hyperuniform packings. (b) Inverse participation
ratio (IPR) shows that sloshing modes are highly collective. (c) Local
affinity (LA) shows that sloshing modes are also highly correlated.

where �vi is the mode displacement of the ith particle. This
quantity measures the localization of each mode. The modes
that constitute the sloshing band are easily distinguished from
the initial configurations as they are highly collective, with
typical IPR lower than at any other point in the spectrum. The
IPR for frequencies above the sloshing band is quantitatively
similar to that observed in the initial configurations.

In addition to being collective, these modes are highly
spatially correlated, consisting of nearly affine “sloshing” mo-
tions over large portions of the system, visualized in Fig. 8. To
quantify this, we define the local affinity (LA) of a single mode
�vi as

LA = 1

Nneigh

∑
〈i, j〉

�vi · �v j

‖�vi‖ ‖�v j‖ , (7)

(a) (b)

FIG. 8. Displacement field of a typical sloshing mode in a hy-
peruniform packing (a) and a similar frequency mode in the initial
packing (b). The length and color of each arrow represent the magni-
tude and direction of each particle’s displacement in this mode. The
normal mode of the hyperuniform packing is spatially coherent and
reminiscent of a gyroidal structure, whereas that of the initial packing
is incoherent.

where i indicates the particle index and 〈i, j〉 denotes the Nneigh

neighbors in the radical Delaunay triangulation [25]. For each
mode this quantity measures the extent to which adjacent
particles oscillate in phase and in the same direction, having
a value of 1 for a spatially affine displacement of the entire
system. Figure 7(c) shows that when we measure the local
affinity, we again find a clear distinction between the slosh-
ing modes in the hyperuniform systems and the much less
correlated low-frequency modes of the initial configurations.
Modes within the sloshing band are consistently more affine
than the rest.

IV. CONCLUSIONS

We have demonstrated that hyperuniform, overjammed,
polydisperse granular packings not only exist, but can be
efficiently generated at large system size through a process
of iterative optimization. This result allows us to probe a
concrete set of systems to better understand the implications
of hyperuniformity.

Despite being chosen on geometrical grounds, the hype-
runiform packings we construct exhibit unusual mechanical
properties. We have investigated these by exploring their lin-
ear vibrational modes. Here we find a low-energy band gap
structure not seen in typical preparations, which includes
highly collective excitations and regions of reduced density
of states, indicative of the formation of phononic band gaps.
Further modification of the band structure of granular media
may be possible through similar geometric optimization.

Additionally, the lack of normal modes at low frequency
suggests that these packings are highly stable against me-
chanical perturbation. Accordingly we believe that they lie in
particularly deep wells in the soft sphere energy landscape.
This suggests that the procedure of smoothing out density
fluctuations through Voronoi iteration may be somewhat anal-
ogous to aging in thermal glasses. Further elaboration of this
correspondence could shed light on the geometric properties
of aged glasses, and the role of large-scale geometric hetero-
geneity in glassy dynamics.
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