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High strength-to-weight ratio materials can be constructed by either maximizing strength or minimizing
weight. Tensegrity structures and aerogels take very different paths to achieving high strength-to-weight
ratios but both rely on internal tensile forces. In the absence of tensile forces, removing material eventually
destabilizes a structure. Attempts to maximize the strength-to-weight ratio with purely repulsive spheres
have proceeded by removing spheres from already stable crystalline structures. This results in a modestly
low density and a strength-to-weight ratio much worse than can be achieved with tensile materials. Here,
we demonstrate the existence of a packing of hard spheres that has asymptotically zero density and yet
maintains finite strength, thus achieving an unbounded strength-to-weight ratio. This construction, which
we term Dionysian, is the diametric opposite to the Apollonian sphere packing which completely and stably
fills space. We create tools to evaluate the stability and strength of compressive sphere packings. Using
these we find that our structures have asymptotically finite bulk and shear moduli and are linearly resistant
to every applied deformation, both internal and external. By demonstrating that there is no lower bound on
the density of stable structures, this work allows for the construction of arbitrarily lightweight high-strength
materials.
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When sand is densely packed, it is strong enough to
support the weight of an elephant. But how loosely can one
pack sand before this rigidity is lost? The answer is as
loosely as one would like. That is, it is possible to rigidly
pack hard spheres at any density, from filling all of space to
filling none. In this manuscript we show a method for
creating the sparsest possible hard sphere packings and
demonstrate their impressive stability. Hard sphere pack-
ings are of particular interest because unlike other materials
with a high strength-to-weight ratio such as tensegrity
structures [1] and aerogels [2], hard spheres are purely
compressive and do not rely on internal tensile forces.
There exist mechanically rigid packings with a density

arbitrarily close to unity, such as theApollonian gasket [3,4].
Wewish to find the foil to such a packing, that is, onewith the
smallest possible packing fraction that remains mechani-
cally stable. As Dionysus is the nadir to the zenith that is
Apollo [5], we refer to the sparsest possible mechanically
stable packings as Dionysian packings. We present in this
Letter a construction for a Dionysian packing which has
vanishingly low density in two and three dimensions.
Rigidity [6] describes a state in which no motion is

possible. In the context of sphere packings, this is termed
strictly jammed [7–11]. A strictly jammed packing is
resistant to all possible volume preserving deformations
of the particles and boundaries.
Demonstrating that a packing is mechanically stable is

commonly done using a linear programming algorithm
[8–10]. In addition to demonstrating that our packings are
stable through this same linear programming approach, we

also compute the elastic moduli for the underlying spring
network.
Finding a Dionysian packing is the same as finding

the jamming threshold of sphere packings [10,11]. The
jamming threshold is the lowest density that can be
achieved for strictly jammed configurations. However,
while this threshold has mostly been explored for mono-
disperse configurations, we show that lower density pack-
ings can be found by expanding the search space to include
polydispersity.
The method we employ is inspired by the construction of

the Böröczky bridge packing [12,13] for which locally
stable bridges of circles can be constructed with arbitrary
length. These bridges lead to packings with asymptotically
zero density, but only satisfy the very weakest definition of
stability; they are only locally stable or locally jammed
[7–13]. Following the spirit of the Böröczky bridge packing
and allowing for the radii of the spheres to be additional
degrees of freedom, we achieve Dionysian packings subject
to periodic boundary conditions at arbitrarily low densities.
This demonstrates that the lower density bound for
mechanically stable, repulsive circle, and sphere packings
is precisely zero.
To determine if a packing is strictly jammed, we model it

as a spring network in which spheres interact through a
harmonic contact potential in their overlaps. We examine
whether or not the spring network represents a minimum
with respect to position degrees of freedom x as well as
symmetric affine, volume-preserving strain degrees of
freedom ε [9,14], where the potential is
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and ξij is the normalized overlap between spheres i and j.
We require force balance on all degrees of freedom. The

forces on the position degrees of freedom are

Fα
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where nαik is the α component of the normalized contact
vector pointing from particle k to particle i and ri is the
radius of sphere i. Forces on the strain degrees of free-
dom are
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for spheres i and j in Cartesian directions α and β, where
εαβ is the strain degree of freedom and xαij is the contact
vector which is not normalized.
These forces are subject to the volume-preserving con-

straint TrðεÞ ¼ 0 [9] so that force balance is achieved when
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Because this derivative is proportional to overlap, it is
trivially zero for any packing where overlaps do not occur.
To ensure that these packings are at a critical point due to a
balancing of strain degrees of freedom, we evaluate the
derivative with infinitesimal overlap.
The rigidity matrix [15] in conjunction with a linear

programming algorithm [8–10] is used to determine if
packings are strictly jammed. The rigidity matrix Rx relates
a perturbation of the particles x⃗ with the stresses on the
bonds b⃗ such that b⃗ ¼ Rxx⃗. However, perturbing the
particles is not our only degree of freedom to explore
when considering whether or not a packing is strictly
jammed as we must also consider bulk deformations of the
system as encoded in strain degrees of freedom. We define
the extended rigidity matrix as R ¼ ðRxRεÞ, where Rx is the
ordinary rigidity matrix and Rε relates the bond stresses to
the strain degrees of freedom. (See Supplemental Material
[16] for more information.) However, applying a strain that
increases the volume of the periodic cell will allow all of the
bonds to break, unjamming the packing. As such, we apply
a constraint preventing the strain matrix ε from having
volume changing deformations [9].
We quantify the degree of stability by calculating the

resistance of the packing to compressive deformations and
shear deformations via the bulk and shear moduli, respec-
tively. These quantities can be calculated simultaneously by
computing the stiffness matrix C [17] for the packing. This
matrix has the property σ⃗ ¼ Cϵ⃗, where σ⃗ is the stress

(I) (II)

(IV)(III)
FIG. 1. The construction of a Dionysian packing in two and three dimensions. Left: (I) A row of n ¼ 5 circles a (purple) lie on a
strictly convex curve C such that each circle kissing its neighbors. (II) A row of n ¼ 5 circles b (orange and yellow) are placed such that
they kiss two circles a from below and a circle b on either side. The rightmost b circle is constrained such that its center lies on the
vertical line tangent to the rightmost a circle. (III) A row of n − 1 ¼ 4 circles c (blue) lie on a horizontal line and kiss two b circles
above. (IV) A bridge is formed by reflecting the circles about the dotted lines of symmetry. Three bridges are combined and their centers
are filled as shown (gray). Because of the periodic boundary conditions, each of the bridges wraps around the unit cell to contact the
central gray spheres twice such that each unit cell contains six half-bridges or three full bridges. The resulting packing, which is jammed
and shear stable, has a very low density and is a Dionysian packing in the limit as n → ∞. Right: A three dimensional mechanically
stable packing at arbitrarily low densities. Such a construction contains the same three types of spheres as in the two dimensional analog
but with additional symmetries and an entirely unrelated set of spheres filling the void region (gray). The three dimensional Dionysian
packing has a much narrower set of convex curves C for which overlaps do not occur (as detailed in the Supplemental Material [16]).
This requires a much more subtle curvature of C which is not apparent to the naked eye in this figure.

PHYSICAL REVIEW LETTERS 128, 018002 (2022)

018002-2



experienced by the packing when a particular strain ϵ⃗ is
applied. The stiffness matrix can be computed in terms of
the rigidity matrix as well as the states of self-stress for Rx.
The matrix of states of self-stress S is an orthonormal basis
for the zero modes of RT

x such that RT
x S ¼ 0⃗. The states of

self-stress represent the basis of stresses that can be placed
on the bonds without causing particle perturbations. Using
these terms, the stiffness matrix can be computed as

C ¼ RT
ε SSTRε: ð5Þ

(See Supplemental Material [16] for a derivation and an
explanation of this equation.)
To explicitly satisfy the constraints for shear stability and

jamming, we focus on creating a packing which is locally
stable and has a high number of contacts per particle z, and
then test for stability. As illustrated in Fig. 1 and described
in more detail in the Supplemental Material [16], this is
achieved by placing n circles labeled a, where n is an odd
integer greater than 2, on a strictly convex curve C such that
they kiss their neighbors. A new row of circles b is then
placed below so that each b circle kissing two a neighbors
from below and a b neighbor on each side. Finally, the
centers of circles c are placed on a line of zero slope and
constrained to touch two b circles from below. Applying
the appropriate symmetries, a stable bridge is formed. This
construction can be replicated and the bridges can be joined
such that a circle packing is formed without overlapping
regions. This packing, with the addition of thirteen circles
filling the largest void, is a Dionysian packing for particular
construction parameters. Our bridge placement for the two
dimensional Dionysian packing is based on the contact
network of the triangular lattice.
In the limit of an infinitely large bridge, we find that

every a circle has four contacts, every b has six, and every
c has four. The asymptotic number ratio of this packing
is a∶b∶c ¼ 2∶2∶1. This means that there are z ¼
ð2 × 4þ 2 × 6þ 4Þ=5 ¼ 4 4

5
contacts per particle in two

dimensions, which is larger than is required by the Maxwell
rule for shear stable and jammed systems [18].
For the Böröczky locally jammed packing [12,13], the

two dimensional version can be used to create a locally
jammed packing in any dimension by elevating the circles
to spheres of the desired dimension and stacking the result.
Such a trivial procedure will not work to extend the
Dionysian construction because it results in structures
which are not convex and so are subject to zero energy
modes. To create a three dimensional Dionysian packing,
we instead construct a set of six bridges in three dimensions
and combine them as shown in Fig. 1. A three dimensional
bridge is constructed very similarly to the two dimensional
bridge and exploits the symmetries of three dimensional
space.
In the limit of an infinitely large bridge, we find that

every a sphere has six contacts, every b has eight, and every

c has eight. The asymptotic number ratio for these spheres
is a∶b∶c ¼ 4∶4∶1. This means that there are z ¼
ð4 × 6þ 4 × 8þ 8Þ=9 ¼ 7 1

9
contacts per particle in three

dimensions, which is larger than is required by the Maxwell
rule for shear stable and jammed systems [18].
Not all convex curves C result in viable packings; some

choices of C result in overlapping of spheres in the limit as
n approaches infinity. While infinitely many viable choices
of C are possible, for simplicity we choose curves that fit
the form

fðxÞ ¼ ðf0 − h∞Þ2
ðf0 − h∞Þ − xδ

þ h∞; ð6Þ

where f0 is the height of the curve at x ¼ 0, δ is the slope of
the curve at x ¼ 0, and h∞ ¼ limx→∞fðxÞ. The values used
in this manuscript are different between the two and three
dimensional versions. (See Supplemental Material [16]).
For these parameters, we can track the smallest distance

w between the b spheres and their reflected counterparts as
seen in Fig. 2. From this figure, we see a very clear power
law and conclude that in the limit of infinitely large bridges,
no unwanted additional contacts are created. This means
that regardless of the value of n we choose, there are no
overlaps for our Dionysian packing subject to the chosen
curves C. Because the length of our bridges increases with n
but the other spatial dimensions do not, this construction
results in packings with a density that falls like n1−d.
Using the aforementioned linear programming algorithm

on our Dionysian packings, we find that they are both
jammed and shear stable for every n studied up to n ¼ 105

FIG. 2. Top right inset: demonstration of the definition of a gap
for a circle. The b circles, indexed by i, oscillate in size and are
separated into two categories labeled by squares and triangles.
Bottom left inset: The gap value for both square and triangular
marked spheres asymptotes in two and three dimensions. When
the asymptotic gap value is subtracted, the gap sizes follow a
power law of N−1 as they reach their respective asymptotic
values.
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(N ¼ 3145) with packing fraction 0.0558 in two dimen-
sions and n ¼ 25 (N ¼ 2731) with packing fraction 0.0128
in three dimensions.
In addition to demonstrating jamming and shear

stability, we quantify the level of stability by calcula-
ting the shear, G, and bulk, K, moduli [19,20] shown in
Fig. 3. The two dimensional dionysian packing is iso-
tropic and has a single shear modulus, G. However,
the three dimensional Dionysian packing, like the FCC
crystal upon which it was based, has two independent
shear moduli, G100 and G110 [21]. These moduli in two
dimensions can be calculated from the stiffness matrix as
K ¼ ðC11 þ C12Þ=2 and G ¼ C33. In three dimensions,

these are calculated as K ¼ ðC11 þ 2C12Þ=2, G100 ¼ C44,
and G110 ¼ ðC11 − C12Þ=2.
To compare the mechanical properties of Dionysian

packings with other purely compressive solids, we also
studied the properties of crystals and shear-stabilized
jammed packings. We generated shear-stabilized amor-
phous systems with monodisperse radii in three dimensions
and 25% polydispersity in two dimensions drawn from a
log-normal distribution. We then used a modified FIRE
algorithm [23] that performs a constrained minimization
with respect to both volume-preserving strains and posi-
tions as implemented in the pyCudaPacking software
[24–26]. We created critically jammed and shear-stabilized
packings by alternating between shear-stabilizing packings
and uniformly decreasing the packing fraction and by
extension the system pressure [27].
Figure 3 demonstrates that crystals, shear-stabilized

jammed systems, and Dionysian packings all have a bulk
modulus per particle that plateaus to a fixed value in the
limit of large N. Similarly, the shear moduli per particle for
crystals and Dionysian packings plateau for large N. In
contrast, we confirm the claim by Dagois-Bohy et al. [22]
that the shear modulus in shear-stabilized jammed systems
decreases like 1=N. These results indicate that Dionysian
packings maintain their stability even as the density
approaches zero, whereas amorphous systems are only
marginally stable in the thermodynamic limit. Remarkably,
Dionysian packings can be created without sacrificing
stiffness.
Extension of our procedure to higher dimensions can be

proven to not be viable due to unavoidable overlapping of
spheres (see Supplemental Material [16]). We conjecture
that higher dimensional Dionysian packings also have
arbitrarily low densities, but to demonstrate this will require
a novel construction.
Conclusions.—We find that the lower bound on density

for mechanical stability of purely repulsive spheres is 0
(Dionysian) and the upper bound is 1 (Apollonian) in two
and three dimensional sphere packings. In addition to this
solution and the extension of our understanding of the
limits associated with the jamming energy landscape, this
discovery has implications for our fundamental under-
standing of mechanical stability. Where Apollonian pack-
ings can be used to create structures which fill space
entirely, Dionysian packings can be used to create struc-
tures that utilize very little material and remain stiff. We
prove that appreciably lighter weight materials can be
constructed with no lower bounds. However, the exper-
imental construction of such a system would necessarily be
a major undertaking. Hard sphere systems do not exist in
reality and must be replaced with high modulus soft-sphere
particles. Real systems have shape and size imprecisions
that make the physical construction process require addi-
tional theoretical investigation. Additionally, and perhaps
most significantly, friction between physical particles adds

FIG. 3. The dimensionless bulk K and shear G moduli per
sphere for Dionysian and amorphous packings in a unit cell as a
function of the number of spheres N. The green line represents
a two dimensional triangular packing, the magenta line represents
a three dimensional FCC packing, and red and blue represent two
dimensional and three dimensional packings, respectively. The
dashed curves with open symbols represent G110, the shear
modulus in direction (1,1,0), whereas the solid curves with
closed symbols represent G100. The results are exact for the
Dionysian packings and crystals. For the amorphous systems,
sufficiently many systems were sampled to make the standard
error bars smaller than the plot markers. In the limit of large N,
the bulk modulus per sphere asymptotes to a positive value in two
and three dimensions for all of the systems. The shear modulus
for crystals and Dionysian packings plateaus for large N
indicating that these remain very stiff. On the other hand, the
amorphous packings have a shear modulus that decreases like
1=N [22].
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a crucial layer of complication. While the structures offered
here may not be the most well-suited for practical consid-
erations, this work demonstrates that there must exist
structures at every density which remain strictly jammed
and can be tuned to one’s particular needs.

We thank Aileen Carroll-Godfrey, Sean Ridout, James
Sartor, and Mike Thorpe for helpful discussions and
feedback. This work was supported by National Science
Foundation (NSF) Career Grant No. DMR-1255370 and
the Simons Foundation No. 454939.

[1] R. B. Fuller, Synergetics: Explorations in the Geometry of
Thinking (Macmillan, New York, 1982).

[2] S. S. Kistler, Coherent expanded aerogels and jellies, Nature
(London) 127, 741 (1931).

[3] P. Bourke, An introduction to the Apollonian fractal,
Comput. Graph. Forum 30, 134 (2006).

[4] J. Lagarias, C.Mallows, and A.Wilks, Beyond the Descartes
circle theorem, Am. Math. Mon. 109, 338 (2002); Editor’s
endnotes, Am. Math. Mon. 115, 769 (2008).

[5] A. Del Caro, Dionysian classicism, or Nietzsche’s appro-
priation of an Aesthetic norm, J. Hist. Ideas 50, 589 (1989).

[6] R. Connelly, Rigidity of packings, Eur. J. Combinatorics 29,
1862 (2008).

[7] S. Torquato, A. Donev, and F. H. Stillinger, Breakdown of
elasticity theory for jammed hard-particle packings: Conical
nonlinear constitutive theory, Int. J. Solids Struct. 40, 7143
(2003).

[8] A. Donev, S. Torquato, F. H. Stillinger, and R. Connelly,
Jamming in hard sphere and disk packings, J. Appl. Phys.
95, 989 (2004).

[9] A. Donev, S. Torquato, F. H. Stillinger, and R. Connelly, A
linear programming algorithm to test for jamming in hard-
sphere packings, J. Comput. Phys. 197, 139 (2004).

[10] S. Torquato and F. H. Stillinger, Toward the jamming
threshold of sphere packings: Tunneled crystals, J. Appl.
Phys. 102, 093511 (2007).

[11] S. Torquato and F. H. Stillinger, Jammed hard-particle
packings: From Kepler to Bernal and beyond, Rev. Mod.
Phys. 82, 2633 (2010).

[12] K. Böröczky, Über stabile Kreis- und Kugelsysteme, Ann.
Univ. Sci. Budap. Rolando Eötvös Nom. Sect. Math. 7, 79
(1964).

[13] M. Kahle, Sparse locally-jammed disk packings, Ann.
Comb. 16, 773 (2012).

[14] A. Donev and S. Torquato, Energy-efficient actuation in
infinite lattice structures, J. Mech. Phys. Solids 51, 1459
(2003).

[15] Rigidity and Symmetry, edited by R. Connelly, A. I. Weiss,
and W. Whiteley, Fields Institute Communications
(Springer-Verlag, New York, 2014).

[16] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.128.018002 for addi-
tional information to construct Dionysian Packings, justi-
fication for the failure of trivial extensions to higher
dimensions, analysis of curvature for bridges, and derivation
of stiffness matrix.

[17] C.-L. Liao, T.-P. Chang, D.-H. Young, and C. S. Chang,
Stress-strain relationship for granular materials based
on the hypothesis of best fit, Int. J. Solids Struct. 34,
4087 (1997).

[18] T. C. Lubensky, C. L. Kane, X. Mao, A. Souslov, and K.
Sun, Phonons and elasticity in critically coordinated lattices,
Rep. Prog. Phys. 78, 073901 (2015).

[19] D. Askeland and P. Fulay, The Science & Engineering of
Materials (Cengage Learning, Boston, 2005).

[20] Beer, Mechanics Of Materials (Si Units) 5E (McGraw-Hill,
New York, 2009).

[21] A. Ballato, Poisson’s ratio for tetragonal, hexagonal, and
cubic crystals, IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 43, 56 (1996).

[22] S. Dagois-Bohy, B. P. Tighe, J. Simon, S. Henkes, and M.
van Hecke, Soft-Sphere Packings at Finite Pressure
but Unstable to Shear, Phys. Rev. Lett. 109, 095703
(2012).

[23] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P.
Gumbsch, Structural Relaxation Made Simple, Phys. Rev.
Lett. 97, 170201 (2006).

[24] P. K. Morse and E. I. Corwin, Geometric Signatures of
Jamming in the Mechanical Vacuum, Phys. Rev. Lett. 112,
115701 (2014).

[25] P. Charbonneau, E. I. Corwin, G. Parisi, A. Poncet, and F.
Zamponi, Universal Non-Debye Scaling in the Density of
States of Amorphous Solids, Phys. Rev. Lett. 117, 045503
(2016).

[26] P. K. Morse and E. I. Corwin, Echoes of the Glass Transition
in Athermal Soft Spheres, Phys. Rev. Lett. 119, 118003
(2017).

[27] P. Charbonneau, E. I. Corwin, G. Parisi, and F. Zamponi,
Jamming Criticality Revealed by Removing Localized
Buckling Excitations, Phys. Rev. Lett. 114, 125504
(2015).

PHYSICAL REVIEW LETTERS 128, 018002 (2022)

018002-5

https://doi.org/10.1038/127741a0
https://doi.org/10.1038/127741a0
https://doi.org/10.1016/j.cag.2005.10.017
https://doi.org/10.1080/00029890.2002.11920896
https://doi.org/10.1080/00029890.2008.11920591
https://doi.org/10.2307/2709799
https://doi.org/10.1016/j.ejc.2008.01.009
https://doi.org/10.1016/j.ejc.2008.01.009
https://doi.org/10.1016/S0020-7683(03)00359-7
https://doi.org/10.1016/S0020-7683(03)00359-7
https://doi.org/10.1063/1.1633647
https://doi.org/10.1063/1.1633647
https://doi.org/10.1016/j.jcp.2003.11.022
https://doi.org/10.1063/1.2802184
https://doi.org/10.1063/1.2802184
https://doi.org/10.1103/RevModPhys.82.2633
https://doi.org/10.1103/RevModPhys.82.2633
https://doi.org/10.1007/s00026-012-0159-0
https://doi.org/10.1007/s00026-012-0159-0
https://doi.org/10.1016/S0022-5096(03)00048-6
https://doi.org/10.1016/S0022-5096(03)00048-6
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.018002
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.018002
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.018002
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.018002
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.018002
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.018002
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.018002
https://doi.org/10.1016/S0020-7683(97)00015-2
https://doi.org/10.1016/S0020-7683(97)00015-2
https://doi.org/10.1088/0034-4885/78/7/073901
https://doi.org/10.1109/58.484463
https://doi.org/10.1109/58.484463
https://doi.org/10.1103/PhysRevLett.109.095703
https://doi.org/10.1103/PhysRevLett.109.095703
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.112.115701
https://doi.org/10.1103/PhysRevLett.112.115701
https://doi.org/10.1103/PhysRevLett.117.045503
https://doi.org/10.1103/PhysRevLett.117.045503
https://doi.org/10.1103/PhysRevLett.119.118003
https://doi.org/10.1103/PhysRevLett.119.118003
https://doi.org/10.1103/PhysRevLett.114.125504
https://doi.org/10.1103/PhysRevLett.114.125504

