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Supplemental Information470

Impact of Freezing Degrees of Freedom on Stability. Here, we show471

that freezing any subset of existing degrees of freedom in a system of472

particles can lead to an increase in the stability of the system. The473

two measuring tools we use are the distance to next instability, ”P ,474

and the density of states D(Ê) as discussed in Fig. 2. To measure475

”P , we first break the Hessian matrix into two terms, one that476

includes the rigidity matrix, Hs = CT C, and one that includes the477

prestress forces, Hp. We then uniformly increase the prestress term478

using a dimensionless coe�cient that includes the relative change479

in the pressure given by Eq. (3):480

H = Hs +
”P + P

P
Hp [3]481

Increasing ”P in Eq. (3) is equivalent to increasing the contact482

forces uniformly. This pushes the system towards an instability483

without changing the geometrical configuration of the system. Since484

the prestress term in Eq. (3) is negative definite, increasing its485

components will push the eigenvalues of the Hessian matrix, H,486

to zero. To measure the distance to an instability, we increase ”P487

in small steps and monitor the lowest non-zero eigenvalue of the488

Hessian. The ”P for which this eigenvalue goes to zero is data that489

is presented in Figs. 2a,b, and 4a .490

Fig. 4a shows the change in the pressure, ”P , required to push a491

system to a nearby instability when the motion of all the particles492

is confined in direction x (red), in comparison to conventionally493

prepared packings (black) where the particles are free to move in494

all d available directions. The result is very similar to Fig. 2a, as495

freezing the x degrees of freedom increases the distance to a nearby496

instability by a few orders of magnitude.497

Fig. 4b shows the ensemble averaged density of states in 3D498

systems when the x components of all particle positions are removed499

from the Hessian (red) compared to when all positional degrees of500

freedom are available (black). As can be seen from this plot, there501

is a clear shift to higher frequencies in the density of states which502

is similar to the shift in the lower tail of the density of states when503

radii were frozen at their equilibrium values in Fig. 2c. Both plots504

in Fig. 4 show that freezing an existing subset of degrees of freedom505

can make the system more stable.506

Impact of Radius and Stiffness Degrees of Freedom on Rigidity. Here,507

we present a mathematical description for the di�erence between508

radius and sti�ness degrees of freedom at the onset of rigidity. The509

main goal is to work out the type of degrees of freedom that can510

impact the Maxwell’s count and shift the critical point. Since the511

Maxwell’s count uses the rank-nullity theorem (50) on the rigidity512

matrix, we can start o� by calculating this matrix which relates513

the changes in the constraints to changes in the available degrees514

of freedom (51, 52). For instance, in a packing with N particles515

and Ncon overlapping contacts, changes in the overlaps are directly516

related to changes in the particle positions through Eq. (4):517

Cu = �h [4]518

where u is an Nd◊1 dimensional vector with elements that represent519

the changes in the positions of particles 1 through N , C is the520

rigidity matrix, and �h is an Ncon ◊ 1 dimensional vector where521

row n represents the change in the overlap between the nth pair of522

particles when they move. This means that the rigidity matrix, C,523

is an Ncon ◊ Nd dimensional matrix.524

Now, by adding the radius and sti�ness degrees of freedom525

and a set of global constraints �‰,m = constant, one can write a526

generalized version of Eq. (4) in the form of Cũ = �h with ũ is527

the vector of displacements in the N(d + 2) ≠ µ dimensional space528

of all degrees of freedom where µ is the number of globally applied529

constraints (µ = 7 in this paper). The �h vector is the di�erential530

change in the overlaps, which for a pair ij is given by:531

dhij =
ˆhij

ˆxi
dxi +

ˆhij

ˆyi
dyi +

ˆhij

ˆzi
dzi +

ˆhij

ˆRi
dRi +

ˆhij

ˆKi
dKi

+
ˆhij

ˆxj
dxj +

ˆhij

ˆyj
dyj +

ˆhij

ˆzj
dzj +

ˆhij

ˆRj
dRj +

ˆhij

ˆKj
dKj

[5]532

The setup for such a pair is shown in Fig. 5. Note that according533

to Eq. (1), the only variables that can change the overlaps and534
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Fig. 4. a) The increase in pressure, ”P , required to make a packing unstable before
(black) and after freezing the x-components (red) of the positional degrees of freedom.
The black dashed line show a power law ”P Ã P 2/3. b) Density of states, D(Ê)
versus Ê, for a packing before (black) and after freezing the x-components (red) of
the positional degrees of freedom. All the data in (a) and (b) are ensemble averaged
over 20 mono disperse packings at pressure p = 10≠4.

therefore the number of rows in �h are the positions {Xi} and 535

radii {Ri}, since: 536

ˆhij

ˆxi
=

≠1
Ri + Rj

xi ≠ xj

|XXXi ≠ XXXj |
ˆhij

ˆRi
=

|XXXi ≠ XXXj |
(Ri + Rj)2 = —ij

ˆhij

ˆKi
= 0

[6] 537

By writing the vector ũ in the following form, 538
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one can obtain the generalized rigidity matrix with positions, radii,539

and particle sti�nesses as degrees of freedom:540

where nij = ≠1
Ri+Rj

Xi≠Xj

|Xi≠Xj | = ≠nji and we assume that the541

number of global constraints on both the radius and sti�ness degrees542

of freedom is equal to µ.543

As can be seen from Eq. (8), adding the radii as degrees of544

freedom can change the rank of the rigidity matrix, rank(C), but545

adding the particle sti�nesses as degrees of freedom does not change546

rank(C) since it only adds N ≠ µ extra columns of zeros to the547

matrix.548
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Fig. 5. Two particles i and j with positions Xi and Xj , radii Ri and Rj , and
stiffnesses Ki and Kj are shown. Changes in positions and radii of the particles
can change their overlap.

A. Maxwell’s count. Maxwell’s count is the result of rank-nullity549

theorem on the rigidity matrix:550

rank(C) + nullity(C) = number of columns in C
rank(CT) + nullity(CT) = number of columns in CT [9]551

rank(C) = rank(CT) is the number of independent rows/columns552

in C or CT. Nullity(C) is the dimension of the space of non-trivial553

solutions to Cũ = 0. This is the number of trivial rigid motions that554

do not change the overlaps and therefore is equal to the total number555

of zero modes or floppy modes, F , in the system. Nullity(CT) on556

the other hand, is the number of non-trivial solutions to CTf = 0, 557

which is equal to the number of states of self-stress, SSS. This is 558

because CTf gives the vector of forces on the particles and therefore 559

solutions to CTf = 0 represent all the possible contact forces that 560

keep the system at equilibrium. On the right hand side of the first 561

equation in (9), we have number of columns in C which is equal to 562

the number of degrees of freedom Nd+2(N ≠µ). On the right hand 563

side of the second equation in (9), we have number of columns inCT 564

which is equal to the number of contacts Ncon. By subtracting the 565

two rows in Eq. (9), one can write: 566

F = Nd + 2(N ≠ µ) ≠ Ncon + SSS [10] 567

which is the Maxwell’s count for any system with position, radius, 568

and sti�ness degrees of freedom, Ncon contacts, and µ global con- 569

straints. The number of contacts, Ncon, can also be written as 570

Ncon = ZN/2 where Z is the average number of contacts per par- 571

ticle. The isostatic point is defined as the critical point in which 572

the number of degrees of freedom is balanced by the number of 573

constraints and there are no states of self-stress, meaning that F = d 574

and SSS = nullity(CT) = 0. In other words: 575

ZcN

2
= rank(CT)

= rank(C)
= number of degrees of freedom ≠ nullity(C)

[11] 576

B. Maxwell’s count when positions are the only degrees of 577

freedom. When the only degrees of freedom are positions, 578

number of degrees of freedom = Nd and nullity(C) = d. There- 579

fore: 580

ZcN

2
= Nd ≠ d [12] 581

which in the limit N æ Œ gives Zc = 2d. 582

583

C. Maxwell’s count when radii are added as new degrees of freedom. 584

Introducing radii as new degrees of freedom and µ global constraints 585

adds N ≠ µ new columns to the rigidity matrix and adds 1 to the 586

nullity of the rigidity matrix: 587

ZcN

2
= N(d + 1) ≠ µ ≠ (d + 1) [13] 588

which in the limit N æ Œ gives Zc = 2(d + 1). This means that 589

radii can move the critical point to a higher value as long as µ is 590

negligible compared to N . 591

D. Maxwell’s count when stiffness of particles are added as new de- 592

grees of freedom. Introducing sti�nesses as new degrees of freedom 593

and µ global constraints, adds N ≠ µ new columns to the rigidity 594

matrix. But since all these columns are zero, it does not change the 595

rank of the rigidity matrix. Based on the rank-nullity theorem, this 596

means that sti�ness degrees of freedom add N ≠ µ new zero modes 597

to the system and increase the nullity(C) by N ≠ µ: 598

ZcN

2
= N(d + 1) ≠ µ ≠ (d + N ≠ µ)

= Nd ≠ d

[14] 599

which in the limit N æ Œ gives Zc = 2d. This means that sti�ness 600

degrees of freedom do change the critical point simply because they 601

do not appear in the definition of particle overlaps. 602

8 | F. Hagh et al.


	Maxwell's count
	Maxwell's count when positions are the only degrees of freedom
	Maxwell's count when radii are added as new degrees of freedom
	Maxwell's count when stiffness of particles are added as new degrees of freedom

