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Predicting Breakable Contacts

In this section we elaborate on the process of finding sets of breakable contacts and critically jammed systems.
The states of self stress of the system are the left singular values of R. In practice we find them by computing the
eigenvectors with zero eigenvalues of the square matrix R·RT . We remove unstable particles (rattlers) from R before
doing this calculation, as they contribute only empty rows to R and will thus contribute additional trivial zero modes.
We construct a force space plot of the loads (see Fig. 1) in which each plotted point corresponds to a contact within
the system and the point’s coordinates are the loads applied to that contact in each normalized state of self stress.
We compute the convex hull of all of these points in force space, including the origin. Most facets of this convex hull
do not intersect the origin, but some will contain the origin as well as NSSS−1 contacts. These facets intersect sets of
contacts which can be brought to zero force while the system still retains a purely compressive force network. Thus,
each facet represents a stably jammed system with the force on that facet’s contacts brought to zero (i.e. broken). The
loads for the system in which these contacts are broken are given by the distance from each contact to the hyperplane
intersecting the NSSS − 1 breakable contacts and the origin.

For a system with exactly two states of self stress, this is geometrically constrained to return exactly two facets,
which will typically each contain just one breakable contact. We note that while it is theoretically possible that the
convex hull could not return any facets containing the origin this would only happen when the system requires both
compressive and tensile forces to be stable. In practice, we find that there are always facets containing the origin and
thus there are some contacts which are unnecessary for the mechanical stability of the system. We therefore declare
that these contacts are “breakable.”

Angular Consistency

In this section we elaborate on our process for comparing systems as they decompress. In each step of decompression,
we find two arbitrary basis vectors (i.e. states of self stress) that span the space of possible (with both tension and
compression) force networks for the spring system representation of the contact network. We call those two arbitrary
basis vectors F ′1 and F ′2. When we compute them, they are randomly oriented as any two orthogonal vectors spanning
the same space are equally valid. We thus are free to define new basis vectors, F1 and F2 as F1 = F ′1cos(ζ) +F ′2sin(ζ)
and F2 = −F ′1sin(ζ)+F ′2cos(ζ). We choose ζ to maximize the sum of the individual elements in F2. While maximizing
the elements in F2 is a completely arbitrary choice, doing so allows us to obtain basis vectors that remain comparable
even as the space which they span evolves slightly under decompression. We considered iteratively projecting the
basis vectors onto the force space of the system at each subsequent pressure iteration, but we find that maximizing
elements in F2 effectively achieves the same result while additionally allowing for the analysis at each pressure to be
completely independent.

Number of Critically Jammed Systems and Number of Breakable Contacts

We include here the data for the scaling of Ncj as well as the scaling of the number of breakable contacts, Nbc.
In Fig. S1, we show how Nbc and Ncj scale as a function of the dimensionality of the normalized SSS, dSSS . At
2SSS, the force network ensemble can be understood as a line which encompasses the set of allowed mixing angles. In
this case, Ncj = 2 as there are exactly two endpoints to a line. This typically also results in two breakable contacts,
one at each endpoint, but may instead result in Nbc ≥ 5 by creating a rattler at one endpoint (i.e. four or more
contacts are broken to form one of the critically jammed systems). We rarely find Nbc = 3, 4 which can only arise
from degeneracies or numerical instabilities in the 1SSS force network. At 3SSS, the boundaries of the allowed force
space are the edges of a polygon, and at higher SSS the facets of a polytope. The vertices of these polytopes represent
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Figure S1. Violin plot of the number of critically jammed systems, Ncj , versus dimension of the normalized space of SSS,
dSSS , for N = 128. Purple line shows the empirical fit of the means (white circles), N̄cj ≈ 0.64 · 2.94dSSS . We note that
in odd dSSS , only even numbers of Ncj are allowed, which is geometric in nature and holds also for convex hulls of random
points. Inset, the number of breakable contacts, N̄bc with dSSS . Purple line shows the empirical fit of the means (white circles),
Nbc ≈ 2.25(dSSS)1.46.

the predicted critically jammed systems, and the dSSS −1 dimensional facets represent the sets of breakable contacts.
These polytopes must have at least dSSS facets, but may have arbitrarily many facets and thus arbitrarily many
breakable contacts. We find the means of Ncj and Nbc to have the following scalings:

N̄bc ≈ 2.25(dSSS)
1.46

(S1)

N̄cj ≈ 0.64 · 2.94dSSS (S2)

Correlations Between Breakable Contacts

As shown in Figures S2 and S3, we examine the real space correlations between pairs of breakable contacts in
systems at 2SSS and find no correlation in position or angle subtended between contact vectors. In Figure S4, we
examine the distribution of contact numbers in systems at 2SSS and find that breakable contacts are more likely to
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occur between particles with higher than average contact number (z ∼ 6.4). Such particles are thus more likely to
have a contact that is unnecessary for system stability. This stands in contrast to the soft spot literature, in which
particles with fewer contacts are identified as more likely to rearrange [S1–S4]. This difference arises because soft
spots exclusively identify instabilities, but the FNE also predicts the more numerous stable contact changes involving
more highly coordinated particles.

Figure S2. Correlation function G(θ) of angles θ between pairs of breakable contacts in all systems, orange, and between all
pairs of contacts in a system, black. Pairs of breakable contacts are similar in correlation to a randomly selected pair.
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Figure S3. Pair correlation function G(d) between pairs of breakable contacts at a distance d, orange, and between all pairs of
contacts, black. Pairs of breakable contacts are not correlated in position.
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Figure S4. Probability distribution of contact number Z for all particles, black, and for particles that have a breakable contact,
orange. No particles with a breakable contact have 4 (i.e. the minimum d+ 1) contacts, and the distribution is skewed towards
higher number of contacts, with an average value of ∼ 6.45 rather than 6 (i.e. 2d).


