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Amorphous systems of soft particles above jamming have more contacts than are needed to achieve
mechanical equilibrium. The force network of a granular system with a fixed contact network is thus
underdetermined and can be characterized as a random instantiation within the space of the force network
ensemble. In this Letter, we show that defect contacts that are not necessary for stability of the system can
be uniquely identified by examining the boundaries of this space of allowed force networks. We further
show that, for simulations in the near jamming limit, this identification is nearly always correct and that
defect contacts are broken under decompression of the system.
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From crafting swords and arrowheads in antiquity to
perusing katanas at the mall today, choosing the available
materials with highest strength has always been of critical
concern. It is the weak points, and modes of failure, that
determine the strength of a material. In polycrystalline
materials, these weak points arise from defects in the crystal
structure [1]. Early approaches to amorphous systems
modeled them as highly defective crystalline systems,
but such models fail to capture emergent phenomena [2].
Amorphous systems thus must be treated in their own right;
consequently, there exists no obvious definition of a defect.
However, “soft spots” can be found, which are locations in
which rearrangements are more likely to occur under shear.
These were first identified via analysis of the low-frequency
quasilocalized vibrational modes [3–6] and have been
further explored using machine learning analysis on the
local structure [7–15]. While these methods have been
effective at identifying rearrangement sites under shear,
they have not been applied to systems under decompres-
sion, another common failure mode of materials. More
importantly, while softness is correlated with structural
quantities such as local potential energy and coordination
number, these structural properties are not good predictors
of rearrangements on their own. Thus softness, while
useful as a heuristic, lacks analytic clarity. Additionally,
while softness is an excellent predictor of instabilities, it
does not predict stable contact network changes (i.e.,
contact changes that do not result in rearrangements),
which comprise the majority of contact network changes
[16,17]. Here, we demonstrate a method for identifying
defective contacts under decompression asymptotically
close to the jamming-unjamming transition. We use the
geometry of the force network ensemble to show that in the
near-jamming limit there exists only a small and precisely
identifiable number of contacts at which any contact
network change can occur.

To achieve mechanical stability, any system must have
at least as many constraints as degrees of freedom. In a
granular system, these constraints are borne by the contacts,
and for a d-dimensional system of N frictionless spheres,
the minimum number of contacts N�

c ∼ Nd [18]. Any
system that possesses more than Nc contacts will have a
resultant indeterminacy in its force networks as there must
exist multiple linearly independent solutions for force
balance. Near jamming, the overlaps (or deformations)
between particles are much smaller than the interparticle
distances. Because of this separation of scales, the forces in
a system can be decoupled from the particle positions, and
therefore can be considered to be a random instantiation
within the space of the force indeterminacy [19–22]. This
is the motivation for the force network ensemble (FNE),
which samples all valid force networks in the spring
representation of a packing with equal probability.
The rigidity matrix R represents a granular system as

an unstressed spring network by encoding the norma-
lized contact force vectors n̂ij between pairs of particles
i and j as

Rkγ
hiji ¼ ðδkj − δki Þn̂γij; ð1Þ

where k indexes particles, γ indexes spatial dimensions, and
δ is the Kronecker delta [19,23–25]. In periodic boundary
conditions, the minimum number of contacts required for
stability is [26]

N�
c ¼ Nd − dþ 1; ð2Þ

and a system with N�
c contacts will have one stable force

network configuration. For each additional contact in
excess of N�

c, the associated unstressed spring network
will have an additional linearly independent mechanically
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stable force network. These linearly independent force
networks are termed “states of self stress” (SSS). These
are the left singular vectors of R associated with the zero
singular values ofR, i.e., the vectors Fi such that FiR ¼ 0⃗.
While these SSS contain compressive as well as tensile
forces, physical packings of frictionless spheres are con-
strained to compressive forces. Thus, we consider the FNE
to be the set of linear combinations of SSS which contain
only non-negative forces.
We previously demonstrated that, by considering the

geometric nature of the SSS of a system, one can calculate
the volume of the (normalized) force network ensemble and
from that the entropy of the force networks [19]. Further
contemplation of this geometry leads us to examine the
boundaries of this volume, which necessarily include
contacts with no stress. These contacts may thus be brought
to zero force without breaking the mechanical stability of
the system. We primarily focus on systems with exactly
two states of self stress (2SSS), which are geometrically
confined to have exactly two such boundaries. Each
boundary corresponds to a set of contacts (typically each
containing exactly one contact), which are unnecessary for
mechanical stability of the packing. The breaking of this
unnecessary contact results in a packing with only one SSS
(1SSS). These boundaries of the volume of allowed force
space identify the contacts that may be broken under
decompression.
We use pyCudaPacking [27], a GPU-based simulation

engine, to generate monodispersed three-dimensional har-
monic soft sphere packings. We minimize the packings in
periodic boundary conditions using the FIRE minimization
algorithm [28]. Using the same methods as in Refs. [29,30],
we start with randomly distributed particles at a packing
fraction φ far above the jamming packing fraction φj and
apply a search algorithm to create systems approximately
logarithmically spaced in excess packing fraction,
Δφ ¼ φ − φj. We generate systems finely spaced in Δφ
(100 steps per decade) to probe the dynamics of the
transition from two or more SSS to 1SSS. We continue
this process until the system has exactly one state of self
stress. We generate datasets of 500 systems at N ¼ 128,
1024, and 100 systems at N ¼ 8192. We measure the
pressure P from the trace of the stress tensor as in Ref. [31]
and denote the pressure at which the system reaches 1SSS
as P�.
The space of all normalized linear combinations of SSS

is an Nc − 1-dimensional space of coefficients. The force
network ensemble is the set of coefficients to linear
combinations of these SSS for which all forces are non-
negative. This can be understood as an “allowed” region in
this space of linear combinations of SSS. While force
networks within this region are purely compressive, at the
boundaries of this region, the load on at least one contact in
the system must be precisely zero. In any system with
multiple SSS, one can exploit the orthogonality of the SSS

to choose the linear combination that yields zero force
on any given contact. The imposition of this constraint
necessarily reduces NSSS, the number of SSS, by one,
and within the context of the force network ensemble is
equivalent to breaking a contact. However, with most
contacts, this will result in negative forces (i.e., tensile
loads) on some of the contacts unless the contact chosen is
on the boundary of the allowed volume of force space. We
demonstrate this geometrically for a 2SSS system in Fig. 1.
In a 2SSS system, the space of normalized linear

combinations of the SSS is a one-dimensional space of
rotations, as any stable force configuration f can be
described by a mixing angle α such that f ¼ sinðαÞF1þ
cosðαÞF2, where F1 and F2 are the linearly independent
SSS. Although the physical forces in the packing are
instead calculated from the overlaps, they represent a stable
force network and as such we are always able to express
them with a mixing angle in this way, up to machine

FIG. 1. Scatter plot of the loads on each contact in the two
states of self stress F1 and F2 (shown with arbitrary rotation)
for a typical system (N ¼ 128) at 2SSS. Each point represents a
contact in the system, with the x coordinate determined by the
load in F1 and the y coordinate determined by the load in F2

for that contact. Positive values represent compressive loads,
and negative values represent tensile loads. A sloped line
passing through the origin (at angle α) represents the linear
combination F1 sin αþ F2 cos α. The load on each contact in
this linear combination can be understood as the distance from
the line to each point. The black lines represent the two linear
combinations of force eigenvectors at the boundary of the
allowed region of force space (shaded green), i.e., the set of
linear combinations for which all loads are compressive (or
zero). These two linear combinations necessarily each bring a
different set of contacts to zero force, shown highlighted in red.
The green line shows the linear combination of the states of self
stress that corresponds to the measured physical forces in the
packing. Inset: a region near the origin in greater detail. For a
more pedagogical explanation of this manner of visualizing the
FNE, see Fig. 1 in [19].
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precision and an overall scale factor. In the intervals
between contact changes, we may thus consider the
physical forces in the packing as flowing within this space
of SSS, which is only gently changing with pressure, as can
be seen in Fig. 2(b). As the SSS space is degenerate, there is
a free overall rotation in the choice of F1 and F2 for each
system, which we break by rotating the force points until
the bare sum of the loads in F2 is maximized. This has the
effect of reducing the relative motion of the force points
during decompression, which we discuss further in the
Supplemental Material [32]. In Fig. 2(a), we show the

mixing angles that describe the position within this space
for the physical forces of a 2SSS system as it decompresses
toward P ¼ P�. By following these angles as a system
decompresses, we see how the physical forces in the system
approach and reach one of the 1SSS states on the
boundaries of the 2SSS space. As an example, we can
follow the upper red curve in Fig. 2(a) down in pressure
toward the contact break, and we see that this system has a
kink around ðP − P�Þ=P� ∼ 1.3. This arises from the
exchange of the contact that originally formed the boundary
of the allowed force space for another, which can be seen
graphically in Fig. 2(b). This represents a change in which
contacts are considered necessary for stability by the FNE,
so for systems in which this occurs, our prediction is
accurate only at pressures below that at which the exchange
occurs. This interchange of boundary contacts with other
contacts that were initially near the boundary is relatively
unusual and is the only mechanism by which our pre-
diction fails.
In a 2SSS system, there are always exactly two boun-

daries on the edge of the force space that correspond to two
sets of “breakable contacts.” Each of these sets of contacts
usually contain just one contact, but sometimes breaking
a contact will form a new rattler, all of whose previous
contacts must also subsequently break. In such a case, all of
these contacts will be found in the set of breakable contacts.
In Fig. 3, we show the probability that one of these sets of
breakable contacts is in fact broken under decompression

FIG. 2. (a) Evolution of mixing angle representation of the
force space under decompression for the system in Fig. 1 over the
range of pressures for which the system is at 2SSS. Position in
force space is shown as mixing angles α − α�, where α� is the
mixing angle of the system at the contact breaking event. Green
shaded region shows all mixing angles for positive-definite force
networks. Green line shows the physical forces. Red lines show
the boundaries of the force network ensemble. Gray lines show
mixing angles that would bring other contacts to zero force.
(b) Evolution of the system in force space, shown as in the inset to
Fig. 1. The highest and lowest pressures at which the system is at
2SSS are shown as gray circles and black x’s respectively, with
arrows between them. Breakable contacts on the edge of force
space are shown in red.

FIG. 3. Probability of predicting contact breaking versus
scaled pressure, for systems decompressing from 2SSS to
1SSS. The prediction is counted as a success if one of the
two predicted sets of contacts are broken when the system
reaches 1SSS. Data shown for FNE predictions in N ¼ 128
(blue), 1024 (green), 8192 (red), for pressures at which at least
25 systems remain at 2SSS. The shaded region around each
curve shows the 95% confidence interval for the estimation of
the probability. Success of the affine response prediction of the
smallest two contacts is shown for N ¼ 128 (dark gray), 1024
(medium gray), 8192 (light gray).
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from 2SSS to 1SSS. We find that the contacts predicted by
the FNE are strongly predictive (> 80%) over the full range
of pressures for which the system has 2SSS. We compare
this to the naïve prediction from affine response: if the
system were to decompress uniformly, the contact with the
smallest overlap, and thus the smallest force magnitude,
would break first. Since the FNE predicts two sets of
breakable contacts, we instead consider the affine predic-
tion as successful if one of the two contacts with smallest
overlap breaks. While affine response is predictive close to
the contact breaking event, the predictive power quickly
falls to zero at higher pressures.
As shown in Fig. 3, the two breakable contacts are highly

predictive for a 2SSS system. At increased pressure, the
number of contacts, and thus the dimensionality of the
space of normalized SSS, dSSS ¼ NSSS − 1, increases as
well. We examine the scaling ofNcj, the number of possible
critically jammed systems consistent with the breakage of
geometrically allowed subsets of these breakable contacts.
At 2SSS, the FNE can be understood as a line that
encompasses the set of allowed mixing angles. In this
case, Ncj ¼ 2, as there are exactly two end points to a line.
At 3SSS, the boundaries of the allowed force space are the
edges of a polygon, and at higher SSS the facets of a
polytope. The vertices of these polytopes represent the
predicted critically jammed systems. We find Ncj to scale
with the dimensionality of the normalized SSS as
N̄cj ≈ 0.64 × 2.94dSSS . For more discussion of Ncj, see
the Supplemental Material [32].
We predict that Ncj critically jammed systems are

compatible with the FNE of any system at > 1SSS. In
Fig. 4, we show the rate at which one of these predicted
critically jammed systems is in fact realized under decom-
pression. We compare our prediction to a naïve prediction
from affine response of the Ncj critically jammed systems,
in which sets of the contacts with the smallest forces break.
The strength of our prediction falls with NSSS. For an N ¼
1024 system at 5SSS, we typically predict about 40 sets of
four breakable contacts (out of 60 × 1012 possible sets). We
find that under decompression one of these sets of four
contacts breaks about half of the time. When looking
instead at the naïve prediction of the 40 unique sets of size
four containing the contacts with smallest loads, we find
one of them to correctly identify the actually realized
critically jammed system under decompression only ∼10%
of the time.
Although all predicted force networks within the FNE

are necessarily mechanically stable (i.e., force balanced),
the minima at these points are not necessarily stable
equilibria. It has recently been shown that only ∼14% of
contact change events are irreversible rearrangements (i.e.,
instabilities), with the remaining ∼86% being reversible
(i.e., stable) contact network events [16,17]. While our FNE
method is able to predict both rearrangements and network
events, rearrangement events cascade into additional

changes in the contact network. Thus, in addition to the
interchange of boundary contacts that can lead to a failed
prediction (as illustrated in Fig. 2), systems with > 2SSS
may correctly identify a breakable contact which, upon
breaking, causes a rearrangement that drastically alters the
contact network and thus the force network ensemble.
Since only 86% of contact change events are reversible, we
expect that each additional contact change predicted can
only carry an 86% chance of possibly predicting the next
contact. Thus, as the number of SSS (and thus contacts)
increases we expect that the success probability for
predicting critically jammed systems scales as ∼0.86dSSS .
This predicted scaling is qualitatively similar to the scaling
of success probability shown in Fig. 4.
We have shown that the force network ensemble of

jammed systems may be used to identify defective contacts
that are highly likely to break under decompression. While
in spirit these defects can be thought of as analogous to soft
spots, we emphasize two key differences here: (1) soft spots
identify locations of instabilities, while the force network
ensemble identifies locations of both instabilities and stable
contact network changes; (2) while soft spots may be
identified using just local information, the FNE approach
by definition invokes global information. One might wish
to use local information to find these defects, and there
exists local structure to the force networks when the system

FIG. 4. Probability of correctly predicting contact breaking by
FNE versus scaled pressure, for systems of N ¼ 1024 particles
decompressing from 2, 3, 4, and 5SSS to 1SSS. Colors represent
number of states of self stress as indicated. At each pressure, the
prediction is counted as a success if one of the Ncj predicted sets
of contacts are broken when the system reaches 1SSS. As in
Fig. 3, data are shown only for pressures at which at least 25
systems remain at the indicated number of SSS. The shaded
region around each curve shows the 95% confidence interval for
the estimation of the probability. Probability of any of the Ncj

combinations of the smallest forces in the system breaking is
shown in gray, from 2SSS (darkest gray) to 5SSS (lightest gray).
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is far from jamming [33]. However, at the jamming point,
the system becomes marginal, and as such any change
in the contact network impacts the whole force network.
Thus, we believe that it would not be possible to identify
these defective contacts near jamming without global
information.
Open questions remain as to the origin of the scaling of

N̄cj. Additional future steps include exploring how the
physical system chooses which contact to break among the
breakable contacts and predicting the values of P� for
individual systems. Another interesting avenue is the search
for force network defects in ultrastable systems [34–36],
which have more contacts near jamming than random
packings, and as such the defects may be delocalized or
poorly defined. Since our protocol identifies both stable
contact changes and instabilities, a final remaining question
is whether these can be differentiated via the force network
ensemble, which would provide a more complete picture of
the defects within the system.
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