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1. Numerical Methods

We expand upon our description of the numerical methods used in our simulations.
We consider varying system sizes from N = 102 to N = 10300 with time varying from
t = 0 to t = 5000 log(N). We simulate such large systems by utilizing the full range of
quadruple-precision floating point numbers and making approximations to the binomial
distribution when dealing with sizes beyond our precision limits. These approximations
are necessary given the limitations of our precision and do not seem to affect the behavior
of the system in any significant manner. In particular, for a site x at time t where the
number of particles, N(x, t), is below 231 we use the C++ Boost integer implementation
of a binomial distributed random number generator to choose the number of particles
that will move right versus left. Above 231 the integer implementation overflows and
we instead approximate the binomial distribution by a Gaussian distribution of mean
N(x, t)B(x, t) and variance N(x, t)B(x, t)(1 − B(x, t)), as dictated by the central limit
theorem. For sufficiently large N(x, t), the variance itself will fall outside of the precision
of a quadruple floating point number. This occurs when N(x, t) > 1064, above which we
approximate the binomial simply by its mean. The number of particles that move right is
then N(x, t)B(x, t). Psuodo-code of the simulation is given:

(1) Start N particles at x = 0
(2) For each site:

draw B(x, t) from U[0,1]

if (N(x, t) > 1064)
N(x+ 1, t+ 1) = N(x, t)B(x, t)
N(x− 1, t+ 1) = (1−B(x, t))N(x, t)

else if (231 < N(x, t) < 1064)
µ = N(x, t)B(x, t)
σ2 = N(x, t)B(x, t)(1−B(x, t))
N(x+ 1, t+ 1) is drawn from N (µ, σ2)
N(x− 1, t+ 1) = N(x, t)−N(x+ 1, t+ 1)

else if (N(x, t) < 231)
N(x+ 1, t+ 1) is drawn from Bin(N(x, t), B(x, t))
N(x− 1, t+ 1) = N(x, t)−N(x+ 1, t+ 1)

where U[0,1] is the random uniform distribution on the range [0, 1], N (µ, σ2) is the Gauss-

ian distribution with mean µ and variance σ2, and Bin(n, p) is the Binomial distribution
with number of trials n and probability p. Note that our simulation differs from Monte
Carlo, or agent based, simulations because we can group all the particles at a site together
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and iterate over each site. Our code is available at https://github.com/CorwinLab/

RWRE-Simulations.
When estimating the statistics (e.g. mean and variance) for MaxNt ,EnvNt and SamN

t , the
optimal manner would be that for each N and t we simulate a large number of environments
and then build up histograms for the behavior of these quantities with one data point
corresponding to one environment. Of course, in numerically computing the quantities
for time t, we naturally compute them for all times smaller than t too, but for the same
environment. Moreover, EnvNt can be computed simultaneously for all N and t relative
to the same environment, providing even further computational savings. We employ this
computationally efficient approach to couple together the estimation for different values
of N and t to the same pool of environments. There is a cost, however, to doing this.
For example, the statistics that we numerically compute for MaxNt for time t and time t′

will themselves be correlated since they are derived from studying the same collection of
environments. This correlation seems to be short-lived in time though, and is only evident
upon zooming into the numerical measurements, for instances as in the inset in Fig. 3 of
the main text.

2. Asymptotic Theory Results

2.1. SSRW MaxN
t . For the SSRW where B(x, t) ≡ 1/2, we use the same notation p(x, t)

and P (x, t), dropping the B subscript. Now assume that the ratio t̂ = t/ log(N) tends to
some finite value. As explained in the main article, if t̂ < (log(2))−1 then N ≫ 2t. In
that case, p(t, t) = 2−t ≫ 1/N which means that it is highly likely that there are many
particles occupying the right-most site at x = t. This implies that Mean

(
MaxNt

)
≈ t and

Var
(
MaxNt

)
≈ 0.

When t̂ > (log(2))−1, the maximal random walk at time t will likely occur significantly
below t and have non-trivial fluctuations which we now describe. For the SSRW, observe
that p(2k − t, t) = 2−t

(
t
k

)
for k = 0, . . . , t. Thus, using Stirling’s formula for binomial

coefficients (or more generally using Cramer’s theorem from the large deviation theory for
sums of independent identically distributed random variables) we arrive at the asymptotic
for v ∈ (0, 1) that

P (vt, t) ≈ e−tISSRW(v) where ISSRW(v) =
1

2

(
(1+ v) log(1+ v)+ (1− v) log(1− v)

)
. (S1)

ISSRW(v) is known of as the large deviation rate function for the SSRW.
We may now combine this with Eq. (2) of the main text to show that MaxNt is ap-

proximately distributed as a Gumbel random variable with location µ ≈ tv̂ and shape
β = 1/I ′SSRW(v̂), where v̂ = I−1

SSRW(1/t̂) (here f−1 means the inverse function and not the
reciprocal). A Gumbel random variable with location µ and shape β has

cumulative distribution function e−e(−x−µ)/β
, mean µ+ βγ, and variance

π2

6
β2, (S2)

where γ ∼ .57721 is the Euler-Mascheroni constant.

https://github.com/CorwinLab/RWRE-Simulations
https://github.com/CorwinLab/RWRE-Simulations
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To see the above limit, observe that

Prob
(
MaxNt ≤ tv̂ + x

)
=

(
1− PB(tv̂ + x, t)

)N ≈
(
1− e−tISSRW(v̂+x/t)

)N
≈

(
1− e−tISSRW(v̂)−I′SSRW(v̂)x

)N
=

(
1−N−1e−I′SSRW(v̂)x

)N ≈ e−e−I′SSRW(v̂)x

.

The first equality follows from Eq. (2) of the main text, the second approximation uses (S1),
the third uses Taylor expansion, the fourth follows from the definition of v̂ = I−1

SSRW(1/t̂),

while the final one uses the approximation (1 − x/N)N ≈ e−x. Notice that in Taylor
expanding we have assumed that lower order terms do not cause issues. This can be easily
justified by going to further orders in the Stirling formula expansion.

Based on the above Gumbel asymptotics, we can now record the asymptotic form of the
mean and variance of MaxNt for the SSRW. Writing v̂(t̂) to make this dependence explicit
and recalling that t̂ = t/ log(N) we see that

Mean
(
MaxNt

)
≈ tv̂

(
t

log(N)

)
+

γ

I ′SSRW

(
v̂
(

t
log(N)

)) , Var
(
MaxNt

)
≈ π2

6
(
I ′SSRW

(
v̂
(

t
log(N)

)))2 .

(S3)
Inverting ISSRW to find v̂(t̂) is non-trivial though can be done numerically or in certain
limits. For instance, noting that for v near zero, ISSRW ≈ v2/2 we see that for t̂ near

infinity, v̂(t̂) ≈
√

2/t̂ and hence I ′SSRW
(
v̂(t̂)

)
≈

√
2/t̂. From this and (S3) it follows that

for t̂ ≫ (log(2))−1, asymptotically

Mean
(
MaxNt

)
≈

(√
2 log(N) +

γ√
2 log(N)

)
t1/2, Var

(
MaxNt

)
≈ π2

12

t

log(N)
.

On the other hand, (S3) also shows that as t̂ tends to (log(2))−1 from above, the mean
goes to t and the variance goes to zero.

2.2. RWRE EnvN
t . Assume that the ratio t̂ = t/ log(N) tends to some finite value ex-

ceeding 1. The key theoretic result we use here is due to [1]. They show that for v ∈ (0, 1),

log
(
PB(vt, t)

)
= −tI(v)+t1/3σ(v)χt where I(v) = 1−

√
1− v2, σ(v) =

(
2I(v)2

1− I(v)

)1/3

.

(S4)

Here I(v) is the large deviation rate function and σ(v)t1/3 is the scalings of the random
environment-dependent fluctuations χt around that rate function. [1] showed that as t →
∞, the distribution of χt converges to a Tracy-Widom GUE distribution χ. For reference
below, let us note that [2]

µχ := Mean (χ) ≈ −1.771, σ2
χ := Var (χ) ≈ .813.

As in the case of the SSRW, we now solve for v̂ = v̂(t̂) such that PB(v̂t, t) = 1/N . Note
that v̂t will then equal the 1/N -quantile EnvNt . From (S4), v̂ must satisfy

tI(v̂)− t1/3σ(v̂)χt = log(N) = t/t̂. (S5)
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Canceling t and dropping the t1/3 term momentarily yields to first order that v̂ is given by

v̂0 = I−1(1/t̂) =

√
1− (1− 1/t̂)2.

We can now Taylor expand I(v̂) and σ(v̂) in (S5) around v̂ = v̂0 and solve for v̂ to the next
order. Doing so we find that

v̂ = v̂0 + t−2/3 σ(v̂0)

I ′(v̂0)
χt +O(t−4/3).

Recalling that v̂t is supposed to yield the 1/N -quantile, we conclude that

EnvNt = v̂0t+ t1/3
σ(v̂0)

I ′(v̂0)
χt +O(t−1/3). (S6)

From this we can extract the asymptotic mean and variance of EnvNt . Written explicitly
(i.e., plugging in I and v̂0 ) this yields the following asymptotic formulas

Mean
(
EnvNt

)
≈ M1(N, t) :=

(
1−

(
1− log(N)

t

)2)1/2
t+ (log(N))2/3t−1/3 2

1/3
(
1− log(N)

t

)2/3√
1−

(
1− log(N)

t

)2µχ

Var
(
EnvNt

)
≈ V1(N, t) :=

((log(N))4/3

t2/3

)22/3(1− log(N)
t

)4/3
1−

(
1− log(N)

t

)2 σ2
χ,

where above we have used that

σ(v̂0)

I ′(v̂0)
=

21/3t̂−2/3(1− 1/t̂)2/3√
1− (1− 1/t̂)2

.

For t̂ = t/ log(N) large, it follows from the above expressions that

Var
(
EnvNt

)
≈ σ2

χ

( log(N)
2

) 1
3 t

1
3 . (S7)

It is important to understand the order of the limits here. First we should fix t̂ = t/ log(N)
and take N and t to infinity. Then we take t̂ large and find the above 1/3 power-law. That
said, with some additional work using the methods of [1] it is possible to show that for the
entire range 1 ≪ t/ log(N) ≪ log(N), this 1/3 power-law persists. We will not provide the
details for that here. However, below we will consider when t is of order (log(N))2. In that
case, for small t in that range, we will find a perfect fit to the 1/3 power-law, thus agreeing
with the assertion that this power-law persists over the full range 1 ≪ t/ log(N) ≪ log(N).

Now assume that the ratio ˆ̂t = t/ log(N)2 remains strictly positive and finite as N and
t tend to infinity. While [1] probes PB(x, t) for x linearly growing with t, [3] probes the

regime where x grows like t3/4. They show that for v ∈ (0,∞),

log
(
PB(vt

3/4, t)
)
≈ −v2t1/2

2
− log(t)

4
+ log(v)− v4

12
+ h(0, v4) (S8)
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where h(y, s) denotes the (random) height at spatial position y and time s of the narrow
wedge solution to the Kardar-Parisi-Zhang (KPZ) equation

∂sh(y, s) =
1
2∂

2
yh(y, s) +

1
2

(
∂yh(y, s)

)2
+ ξ(y, s)

driven by space-time white noise ξ, see [4, 5]. Using this result, we will be able to prove
this other (log(N))2 time scale.

We may solve (S8) perturbatively (as in the log(N) case) for ˆ̂v such that PB(ˆ̂vt
3/4, t) =

1/N . The 1/N -quantile EnvNt = ˆ̂vt3/4 is then given by

EnvNt ≈ ˆ̂v0t
3/4 +

t1/4

ˆ̂v0

(
h(0, ˆ̂v4)−

ˆ̂v40
12

− log(ˆ̂v0)

)
+O(t−1/4) where ˆ̂v0 = 21/2ˆ̂t−1/4.

From this we can explicitly compute the asymptotics of the mean and variance as

Mean
(
EnvNt

)
≈ M2(N, t) :=

(
2t log(N)

)1/2
+
√

t
2 log(N)Mean

(
h
(
0, 4(log(N))2

t

))
Var

(
EnvNt

)
≈ V2(N, t) := t

2 log(N) ·Var
(
h
(
0, 4(log(N))2

t

))
. (S9)

Notice that in the mean we have dropped the lower order contributions from the terms
ˆ̂v40
12 and log(ˆ̂v0). The values of Mean (h(0, s)) and Var (h(0, s)) for varying s > 0 can
be computed numerically through evaluation of the Fredholm determinant formula from
[6, 7, 8, 9]. The result of this computation is recorded as Fig. 3 of [10]. In particular, the
horizontal axis (labeled t in [10]) corresponds to our s variable, and the red circles record

the value of Mean
(
h(0,s)+ s

24

(s/2)1/3

)
while the blue triangles record the values of Var

(
h(0,s)+ s

24

(s/2)1/3

)
(note that the s/24 shift here does not change the variance as it is deterministic). For
s > .33 we approximate the mean and variances by interpolating between the numerically
evaluated values in [10] (S. Prolhac kindly provided the data set used to create Fig. 3 in
that paper). For s < .33 we use the short-time behavior of the KPZ equation explained
below for our values of the mean and variance.

There are two key asymptotics for h(0, s) derived in [6, 7, 8, 9]:
h(0,s)+ s

24

(s/2)1/3
≈ χ as s → ∞

where χ is a Tracy-Widom GUE distributed, and h(0, s) ≈ −1
2 log(2πs)+s1/4π1/42−1/2G as

s → 0 where G is standard Gaussian distributed. These imply corresponding asymptotics

for the mean and variance. In particular, as ˆ̂t → 0,

Var
(
EnvNt

)
≈ σ2

χ2
−1/3 log(N )̂̂t1/3 = σ2

χ

( log(N)
2

) 1
3 t

1
3

which agrees perfectly with (S7). This shows that the long-time behavior in the t =
O(log(N)) scaling regime and the short time behavior in the t = O(log(N)2) scaling regime
match even up to the pre-factor. This strongly suggests the 1/3 power-law in Eq. 5 of the
main text for the entire regime 1 ≪ t/ log(N) ≪ log(N).

On the other hand, from the short-time KPZ asymptotic we find that as ˆ̂t → ∞,

Var
(
EnvNt

)
≈ 1

2
π1/2t1/2
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thereby recovering Eq. (5) for the regime t ≫ (log(N))2 in the main text. This indicates
that for finite N and t it is necessary to stitch together the two regimes to get a reasonable
formula for Var

(
EnvNt

)
. We have found that an error function centered at t = (log(N))3/2

with a width of (log(N))4/3 produces a smooth transition between the two regimes. Thus,
our final expression for the asymptotic mean and variance is given by

Varasy
(
EnvNt

)
=

1− erf
(
t−(log(N))3/2

(log(N))4/3

)
2

V1(N, t) +
1 + erf

(
t−(log(N))3/2

(log(N))4/3

)
2

V2(N, t), (S10)

provided that t ≥ log(N) and 0 for t < log(N). Here erf(x) = 2/
√
π
∫ x
0 e−t2dt is the error

function. This construction is shown in Fig. S2. On the other hand, such stitching is
unnecessary when it comes to the mean since the large t behavior of M1(N, t) matches the
behavior of M2(N, t) all the way as t → ∞. This can be seen through direct asymptotics
of the formulas and is illustrated in Fig. S1. On this account, we simply take

Meanasy
(
EnvNt

)
= M1(N, t). (S11)
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Figure S1. The asymptotic mean functions M1(N, t) and M2(N, t) are
plotted for N = 1085 in red and blue dashed lines, respectively. They agree
closely for the full range of t > log(N) and also match the numerically
measured values Meannum

(
MaxNt

)
given by the purple curve (which is linear,

as expected, until roughly time t = log(N)).
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Figure S2. The asymptotic variance functions V1(N, t) and V2(N, t) are
plotted for N = 1085 in red and blue dashed lines, and the stitched together
formula for Varasy

(
EnvNt

)
from (S10) is plotted as the black dashed line. The

purple curve is the numerically measured curve Varnum
(
EnvNt

)
. The inset

shows how the stitching captures the transition between the two asymptotic
curves V1 and V2, and the solid lines show the asymptotic power-laws that
V1 and V2 demonstrate as t → ∞. The vertical dotted line indicates the
regime crossover at t = (log(N))2.

2.3. RWRE SamN
t and MaxNt . Assume for the moment that t = t̂ log(N) for t̂ > 1. Then

(S4) implies that

PB(Env
N
t +x, t) = exp

(
−tI

(EnvNt
t + x

t

)
+t1/3σ

(EnvNt
t + x

t

)
χt

)
and PB(Env

N
t , t) =

1

N
.

If we Taylor expand to the next order in the exponential we find

PB(Env
N
t + x, t) ≈ exp

(
− tI

(EnvNt
t

)
− I ′

(EnvNt
t

)
x+ t1/3σ

(EnvNt
t

)
χt

)
=

1

N
e−I′

(EnvNt
t

)
x ≈ 1

N
e−I′(v̂(t̂))x.

The Taylor expansion requires a bit of explanation. We expand I
(EnvNt

t + x
t

)
≈ I

(EnvNt
t

)
+

I ′
(EnvNt

t

)
x
t to first order. The similar expansion of σ would produce a lower order term.

However, there is a subtlety that we should point out. The χt random variable implicitly
depends on x as well. Namely, if we look at the random transition probability as we vary
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around EnvNt , the fluctuations of this quantity will vary with x. However, we assume
here that this fluctuation does not contribute to leading order. This assumption would be
true if, for instance, χt looked locally like a random walk with independent and identically
distributed intervals. This property is believed to be universal to models in the KPZ class
and thus it is reasonable to assume that the same holds here. We do not attempt to justify
this theoretically beyond this heuristic, though note that it yields very good agreement
with our numerical simulations. The final approximation in the above string of equations

involves replacing I ′
(EnvNt

t

)
x by I ′(v̂(t̂))x which relies on the fact that

EnvNt
t ≈ v̂0 to highest

order.
Combining the above deduction with (2) in the main text and (1 − x)N ≈ e−xN (for x

small) yields

Prob(MaxNt ≤ EnvNt + x) ≈
(
1− 1

N
e−I′(v̂(t̂))x

)N
≈ e−e−I′(v̂(t̂))x

. (S12)

If we define SamN
t by the equality MaxNt = EnvNt + SamN

t then the above calculation
shows that SamN

t is asymptotically independent of EnvNt and asymptotically is Gumbel
distributed with location and shape parameters

µ(t) = 0, β(t) = 1/I ′(v̂(t̂)) = (t̂− 1)(2t̂− 1)−1/2 ≈ (t̂/2)1/2

where the approximation is for t̂ ≫ 1. This justifies the addition law for variances (Eq. (7)
in the main text)

Var
(
MaxNt

)
≈ Var

(
EnvNt

)
+Var

(
SamN

t

)
(S13)

and (using the Gumbel variance formula in (S2)) this also justifies Eq. (6) of the main text
which provides the asymptotic formula for the variance (we also record that the asymptotic
mean is 0)

Meanasy
(
SamN

t

)
= 0, Varasy

(
SamN

t

)
=

π2

6

(
t

log(N) − 1
)2

2 t
log(N) − 1

≈ π2

12

t

log(N)
, (S14)

where the approximation is for t̂ ≫ 1.
Putting together (S10), (S11), (S13) and (S14) we conclude that

Meanasy
(
MaxNt

)
= M1(N, t),

Varasy
(
MaxNt

)
=

1− erf
(
t−(log(N))3/2

(log(N))4/3

)
2

V1(N, t) +
1 + erf

(
t−(log(N))3/2

(log(N))4/3

)
2

V2(N, t)

+
π2

6

(
t

log(N) − 1
)2

2 t
log(N) − 1

.

(S15)

The above calculation assumed t̂ = t/ log(N) converges to a finite value. However, in a

similar manner based on (S8) we can probe the behavior when ˆ̂t = t/(log(N))2 converges
to a finite value. This behavior agrees perfectly with the large t̂ limiting behavior above.
Thus, we conclude that the formula for Varasy

(
SamN

t

)
should hold for all t ≫ log(N).
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Fig. S3 show our asymptotic theory formulas for the mean of the maximal particle fit
closely with our numerical simulations.

10 3 10 2 10 1 100 101 102 103
t/log(N)

100

101

102

103

104

105

M
ea

n(
M

ax
N t
)

N = 102

N = 10300

Figure S3. The mean position of the maximal particle location (solid line)
for N = 102, 107, 1024, 1085 and 10300 for 10000, 5000, 1000, 500 and 500
instantiations of the environment, respectively. The theoretical prediction
(dashed line) given in Eq. (S15) is also shown. We find the theoretical
predictions for the mean position of the maximum particle, Mean

(
MaxNt

)
,

are in agreement with the data.
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