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Local stability of spheres via the convex hull and the radical Voronoi diagram
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Jamming is an emergent phenomenon wherein the local stability of individual particles percolates to form
a globally rigid structure. However, the onset of rigidity does not imply that every particle becomes rigid,
and indeed some remain locally unstable. These particles, if they become unmoored from their neighbors, are
called rattlers, and their identification is critical to understanding the rigid backbone of a packing, as these
particles cannot bear stress. The accurate identification of rattlers, however, can be a time-consuming process,
and the currently accepted method lacks a simple geometric interpretation. In this manuscript, we propose two
simpler classifications of rattlers in hard sphere systems based on the convex hull of contacting neighbors and the
maximum inscribed sphere of the radical Voronoi cell, each of which provides geometric insight into the source
of their instability. Furthermore, the convex hull formulation can be generalized to explore stability in hyperstatic
soft sphere packings, spring networks, nonspherical packings, and mean-field non-central-force potentials.
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I. INTRODUCTION

A rigid structure is one which holds its shape when per-
turbed infinitesimally. If this structure consists of particles,
this rigid structure is said to be jammed [1–7]. While the
system as a whole may be rigid, local regions of it may still
be unconstrained. The particles—or clusters of particles—
making up these locally unconstrained regions are generally
termed “rattlers” [1,8,9] and are removed from the considera-
tion of the structure for many analyses.

The rigorous rattler detection scheme in the literature [10]
relies on linear programming and is both computationally ex-
pensive and lacks a simple geometric interpretation. Another,
based on an event-driven packing protocol, gives direct physi-
cal meaning to rattler detection by using a stability analysis to
systematically prune compressive forces, leaving rattlers fully
unconstrained [11]. However, this method scales poorly with
system size and dimension, as it requires matrix inversion.
These methods are, however, exact, and the resulting stable
networks which they find are identical. In light of the com-
plexity of these algorithms, a naive rattler detection scheme
via constraint counting has proliferated and been used widely
as a proxy, despite its shortcomings. The naive algorithm
exploits the fact that the minimum number of constraints nec-
essary to stabilize a particle in d dimensions is d + 1 whether
friction is present in the system or not. Thus, the number of
contacts on each particle is counted, and those with fewer
than d + 1 contacts are deemed rattlers. Some (but not all)

*Corresponding author: peter.k.morse@gmail.com
†ecorwin@uoregon.edu

of these proxy methods apply this criterion recursively, thus
more closely approximating the true stable network. However,
this method cannot account for the presence of particles with
at least d + 1 stable contacting neighbors which are neverthe-
less not geometrically constrained.

Here, we present an alternative scheme for identifying
rattlers that is intuitive, efficient, and physically meaningful.
In fact, we have been using it for some time without real-
izing that it was not yet present in the literature [12–34].
Our method is based on a fundamental link between local
rigidity and the local geometry of force carrying contacts, and
implemented through the computation of the convex hull of
the set of contacting particles. The stable network obtained by
this algorithm is identical to that found in Refs. [10,11].

The central thrust of our algorithm is based on a comment
within Ref. [10], namely that a sphere can only be locally
rigid if it has greater than or equal to d + 1 noncohemispheric
contacts. While the authors of Ref. [10] note that simple
constructions can be done in low spatial dimensions (a method
adopted in Refs. [35,36]), ours is a dimensionally independent
construction: a particle whose center is r0 is locally stable if
the sum of all forces acting on it is zero, and if the surface
of the convex hull of the particle’s center and the centers
of all of its contacting neighbors {ri} does not include r0,
i.e., r0 /∈ ∂Conv(r0, {ri}), where ∂Conv is the surface of the
convex hull (illustrated in Fig. 5). We also prove a related
theorem, which can be shown to be equivalent to this, which
states that a particle is locally stable if the maximum inscribed
sphere of its radical Voronoi cell is unique and identical to the
particle itself (illustrated in Fig. 4).

To motivate the importance of a correct accounting
of rattlers, we consider the probability Pnc(d; n) that n
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contacts uniformly distributed around a d-dimensional sphere
are noncohemispheric. This probability is given by Wendel’s
Theorem [37]

Pnc(d; n) = 1 − 21−n
d−1∑
k=0

(
n − 1

k

)
, (1)

which has two important limits. For n = d + 1,
Pnc(d; d + 1) = 2−d as d → ∞, implying that any random
set of d + 1 points will be cohemispheric in the limit of
large dimensions and thus no random set of d + 1 contacting
spheres will satisfy the local stability requirement. Whereas
for n = 2d , the average jamming scenario for frictionless
spheres, Pnc(d; 2d ) = 1

2 as d → ∞.
The rest of this article is structured as follows. In Sec. II,

we provide definitions for the packing models under consider-
ation and a series of mathematical definitions which will allow
us to prove the two main theorems. In Sec. III, we provide
a formal proof that each construction finds the correct stable
network. In Sec. IV, we address computational complexity,
noting that even in the worst case scenario, the convex hull
algorithm is faster than the linear programming algorithm in
d < 6. We conclude in Sec. V by discussing extensions of this
construction to other models.

II. DEFINITIONS

In the following, bold letters denote vectors in Rd , 0 rep-
resents the zero-vector, a · b denotes the dot product between
vectors a and b, {ri} denotes a finite set of points, where each
point is represented by a vector from the origin, and {ri} \ r0

denotes the set {ri} excluding the point r0. All definitions as-
sume the standard Euclidean distance metric on Rd , where the
distance between points a and b is denoted |a − b|. To define
our packing, and to aid in later definitions and theorems, we
define both open and closed balls.

Definition 1. An open ball of radius σ around s is defined
as the set of points contained within a distance σ of s. The
notation we will use is Bσ (s) ≡ {y : |s − y| < σ }.

Definition 2. A closed ball of radius σ around s is defined
as the set of points contained within and including a distance
σ of s. The notation we will use is Bσ (s) ≡ {y : |s − y| � σ }.

We thus consider particles defined by Bσi (ri ) with a nondi-
mensional overlap between particles i and j defined as

hi j ≡ 1 − |ri − r j |
σi + σ j

, (2)

subject to an additive potential U = ∑
i j u(hi j ) where contacts

(hi j � 0) coincide with the potential cutoff, i.e., u(hi j � 0) =
0. While we are primarily interested in hard spheres, where
u(hi j > 0) = ∞, the theorems regarding the convex hull
(Sec. III A) can be extended to soft-sphere potentials includ-
ing (but not limited to) contact power-law potentials where
u(hi j > 0) ∝ hγ

i j for γ > 0 (γ = 2 for Hookean spheres, and
γ = 2.5 for Hertzian spheres). To allow for this extension, we
will thus continue using u(hi j ) as a generic potential, noting
explicitly that only hard spheres are allowed in Sec. III B.

FIG. 1. Here we demonstrate the concept of an extreme point by
examining three red particles labeled (a–c). While this example is
embedded in d = 2, the demonstration extends naturally to higher
dimensions, replacing lines with (d − 1) planes. (a) No line can be
drawn which separates the particle from all other particles, so (a) is
not an extreme point. (b) A line can be drawn which separates the
particle from all other points, and it is thus an extreme point and will
be shown to be on the surface of the convex hull. (c) No line can be
drawn which separates the particle from all other particles, so it is not
an extreme point. However, a line exists which contains the particle
and which divides space such that all particles exist (inclusively) in
one of its half spaces, thus the point is on the surface of the convex
hull.

From this, the force on particle i from particle j can be
defined as

fi j ≡ ∇u(hi j ) = |∇u(hi j )| r j − ri

|r j − ri| . (3)

Here the only salient feature is that the force points toward
the particle center from the point of contact. Unless otherwise
mentioned, we consider only packings which are in a local
energy minimum, such that the sum of forces acting on each
particle is zero. Extensions to packings which are not energy
minimized will be considered in Sec. V.

Definition 3 (Adapted from Ref. [10]). A particle is locally
stable if the sum of the forces acting on it is zero and the forces
acting on it span Rd . Particles which are not locally stable are
called unstable.

In an effort to make this work as self contained as possible,
we have compiled a list of the mathematical definitions nec-
essary to follow the theorems and proofs of Sec. III such that
only basic knowledge of set theory and linear algebra will be
prerequisite. The definitions are adapted from Refs. [38–40].

Definition 4. An extreme point r0 of the finite set {ri} is
a point which can be separated from all other points by a
(d − 1) plane. Thus, there exists a vector a ∈ Rd with at
least one nonzero element and b ∈ R for which a · r0 − b > 0
while a · r j − b � 0 for all r j ∈ {ri} \ r0. An illustration of
both extreme and nonextreme points is given in Fig. 1.

Remark: In our proofs, we only need the extreme points of
finite sets. The concept of an extreme point can of course be
generalized to infinite sets [39], but this makes several of the
theorems unwieldy. The definition used here is nonstandard
but reduces to the common definition in the case of finite sets.

Definition 5. A set K ⊂ Rd is convex if for all a, b ∈ K ,
c = (t − 1)a + tb ∈ K for all t ∈ [0, 1]. Put simply, if a and
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FIG. 2. A simple illustration that a convex set containing points
a and b contains all points on a straight line between them.

b are in K , then K is convex if every point c along the straight
line between a and b is also in K . This is illustrated in Fig. 2.

Definition 6. From Ref. [40], a compact convex set
K ⊂ Rd is a convex polytope if the extreme points of K form
a finite set. In this work, all instances of the word polytope are
implied to be convex.

Definition 7. The surface ∂K of a polytope K is defined as
the infinite set of points s ∈ K for which there exists sout ∈
Bσ (s) where sout /∈ K for all σ .

Definition 8. The convex hull of a set of points Conv({ri})
is the unique closed d-dimensional polytope containing all
points {ri} whose vertices are members of {ri}. The surface of
the convex hull is denoted ∂Conv({ri}) and is shown visually
in Fig. 3.

Definition 9. For a sphere given by Bσ (r), the points
{bi} ⊂ ∂Bσ (r) are cohemispheric if there exists a ∈ Rd with
at least one nonzero element, where a · (bi − r) � 0 for all i.
Similarly, forces {fi} are cohemispheric if a · fi � 0 for all i.
If no such a exists, then the points or forces are noncohemi-
spheric.

Definition 10. For a polytope K , the maximum inscribed
sphere M(K ) is the largest closed ball fully contained in K .
That is, M(K ) = maxσ [Bσ (r) : Bσ (r) ⊂ K]. An illustration of
the concept, including generic, degenerate, and highly sym-
metric cases is given in Fig. 4. We use MIS as an abbreviation
when not referring to a specific M(K ).

Definition 11. In a packing of particles with positions {ri},
the Voronoi cell of particle 0 is the set V (r0) = {y : |y − r0| �
|y − ri| ∀i}.

Definition 12. The power of a point c ∈ Rd with respect to
a sphere with center r and radius σ is given by the expression
�r,σ (c) = |r − c|2 − σ 2. Points on the interior of the sphere

FIG. 3. Here we demonstrate the convex hull (orange) of a set
of points. Points on the surface of the convex hull are colored black,
while points not on the surface of the convex hull are in teal.

(a) (b) (c)

FIG. 4. The maximum inscribed sphere (teal) of a convex poly-
tope (purple) in d = 2. Contact points between the MIS and the
polytope are shown with stars. (a) The generic case with no sym-
metries has d + 1 contact points between the polytope and the MIS.
(b) When two of the contacting surfaces are parallel, it is possible to
have an MIS with only two contacts in any dimension. (c) Highly
symmetric polytopes (regular ones, as shown here, or those near
jamming), may have MIS which have greater than d + 1 contacts
with the polytope.

have negative power, points on the surface of the sphere have
zero power, and points outside of the sphere have positive
power.

Definition 13. In a packing of particles with positions {ri}
and radii σi, the radical Voronoi cell of particle 0 is the set
R(r0) = {y : �r0,σ0 (y) � �ri,σi (y) ∀i}.

Trivially, we see that if all particles are the same size (i.e.,
σi = σ for all i), then the radical Voronoi cell reduces to that of
the standard Voronoi cell. Both the radical Voronoi cell and,
by extension, the Voronoi cell are convex polytopes, and it
is from the definitions that these cells tessellate space, i.e.,
there is no point in space which is not contained in the radical
Voronoi cell of a particle, and the only points which can be
contained in multiple radical Voronoi cells are on the shared
surfaces of two or more cells.

III. PROOFS OF THE STABILITY THEOREMS

In this section, we provide proofs of the two main stability
theorems, labeled Theorem 6 (Sec. III A) and Theorem 10
(Sec. III B). While Sec. III A is entirely self contained,
Sec. III B uses theorems from Sec. III A. Some of the theo-
rems are elementary or have been proven by simpler means
elsewhere, but we formulate our own versions here, as we
believe that they help to build the physical intuition for the
main theorems.

A. Stability via the convex hull

Theorem 1 (The Krein-Milman theorem [41]). A compact
convex subset of a Hausdorff locally convex topological vec-
tor space is equal to the closed convex hull of its extreme
points.

The proof of this theorem is given in Ref. [41]. For the
purposes of this work, we will use the fact that the standard
vector space on Rd with the Euclidean distance metric and
standard inner product is a Hausdorff locally convex topolog-
ical vector space. For clarification of these terms, we suggest
any standard textbook on topology (for example, Ref. [39]).

Corollary 1.1. The convex hull of a set of points
Conv({ri}) is equal to the closed d-dimensional polytope
whose vertices are the extreme points of {ri}.

Proof. Given that the standard vector space on Rd is a
Hausdorff locally convex topological vector space, the Krein-
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Milman theorem states that a closed convex polytope is the
convex hull of its extreme points, which for a convex polytope
are its vertices. �

Corollary 1.2. If r0 is an extreme point of {ri}, then r0 ∈
∂Conv({ri}).

Proof. To prove that r0 ∈ ∂Conv({ri}), we must show that
there exists a point sout ∈ Bσ (r0) such that sout /∈ Conv({ri}).
Because r0 is an extreme point, there exists a ∈ Rd with at
least one nonzero element and b ∈ R such that a · r0 − b > 0
while a · r j − b � 0 for all r j ∈ {ri} \ r0. We can thus con-
struct sout = r0 + σa

2|a| , for which |r0 − sout| = σ
2 , and thus

sout ∈ Bσ (r0). By construction, sout is an extreme point of
the set {sout, ri}, and thus by Corollary 1.1, sout /∈ Conv(ri ).
This statement is true for any value of σ , and thus r0 ∈
∂Conv({ri}). �

Theorem 2. A full dimensional convex polytope is equiv-
alently defined by either its vertices (V-Representation) or
the intersection of half-planes representing its surface (H-
Representation).

The proof of this theorem is contained in standard texts
on convex polytopes, for example following the proofs of
Theorems 3.1.1 and 3.1.2 of Ref. [40] or Theorem 1.1 of
Ref. [38]. The theorem only applies to full dimensional poly-
topes (i.e., ones which are d-dimensional objects), but if the
polytope is a d ′ dimensional object, where d ′ �= d , it is suffi-
cient for our purposes to consider the V-Representation and
the H-Representation in Rd ′

, in which the polytope is full
dimensional.

Corollary 2.1. A point r0 which is contained on a (d − 1)
plane, which defines a halfspace containing all ri is contained
in ∂Conv({ri}). That is, if there exists a ∈ Rd with at least
one nonzero element and b ∈ R such that a · r0 − b = 0 and
a · r j − b � 0 for all r j ∈ {ri} \ r0, then r0 ∈ ∂Conv({ri})

Proof. There are two cases here which need to be proven.
If r0 is an extreme point, then r0 ∈ ∂Conv({ri}) by Corol-
lary 1.2. If r0 is not an extreme point, then the half-plane
representation described here is equivalent to that defin-
ing the H-Representation of a convex polytope, and thus
r0 ∈ Conv({ri}) by Theorem 2. The further statement that
r0 ∈ ∂Conv({ri}) comes directly from the definition of a
halfspace. �

Theorem 3. Any set of d or fewer points on the surface of
a sphere are cohemispheric. That is, for a sphere centered at r0

with radius σ0 and points {ci} satisfying |ci − r0| = σ0, there
exists a vector a ∈ Rd such that a · (ci − r0) � 0 for all i.

Proof. Here, we can relax the condition |ci − r0| = σ0 and
prove a more general theorem. A hyperplane in Rd can always
be formed which passes through the d contact points. That
is, there exist a′ ∈ Rd and b ∈ Rd such that a′ · ci = b for all
ci. Note that if we construct a matrix C with rows ci, then
this hyperplane is not unique if det(C) = 0, but any of the
infinitely many solutions will suffice.

We can define b′ ∈ Rd by a′ · r0 = b′, then a′ · (ci − r0) =
b − b′. If b′ � b, then b − b′ � 0, and we can take a = a′,
whereupon the theorem is proven. If b′ > b, then we can take
a = −a′, whereupon the theorem is proven. �

From this, we note that the minimal number of points ci

for which this theorem no longer holds is d + 1. This is not to
say that any d + 1 points on the surface are noncohemispheric

(a) (b)

FIG. 5. We test whether the blue particle is stable by looking
at the convex hull (red) of its own center and the centers of its
stable neighboring particles (in black). Note that there may be other
contacts with the blue particle which have been determined to be
unstable and are thus not shown. In panel (a) the blue particle is
unstable, because its center lies on the surface of the convex hull.
In panel (b) the blue particle is stable, because its center is not on the
surface of the convex hull.

[see, for example, Fig. 5(a)], but to state that the minimal
number of points on a sphere which are noncohemispheric is
d + 1.

Theorem 4. Given fi1 ∈ {fi} and a ∈ Rd where fi1 �= 0, a �=
0, and a · fi1 �= 0,

∑
i fi = 0 only if there exists fi2 ∈ {fi} \ fi1

such that sign(a · fi1) = −sign(a · fi2).
Proof. Here we project a onto the sum yielding∑
i(a · fi ) = a · fi1 + ∑

i �=i1(a · fi ) = 0. This last equality can
only be true if there is at least one element of the sum which
is of the opposite sign of a · fi1, implying that there exists
fi2 ∈ {fi} \ fi1 such that sign(a · fi1) = −sign(a · fi2). �

This theorem is meant to be a vector extension of the trivial
theorem that a sum of numbers can only be zero if either all
elements are zero, or if it contains both positive and negative
elements. Setting aside the null case, this theorem simply
states that a sum of vectors with at least one nonzero element
can only be zero if it contains positive and negative elements
when projected onto (almost) any axis. A mild caveat must be
added, namely that the projection is not onto a vector normal
to a chosen nonzero vector in the set. This caveat is only a
formality as the projecting vector a is arbitrary.

Corollary 4.1. A particle with zero net force and at least
d + 1 noncohemispheric nonzero forces is locally stable.

Remark: This theorem applies more generally to both point
particles and any shape of particle with forces pointing toward
its center of mass. Such a particle will be stable to translations,
but not to rotations.

Proof. We label the set of nonzero forces {fi} and the par-
ticle center by r. Note that the minimum number of vectors
needed to span Rd is d , so a particle is unstable with fewer
than d forces acting upon it. Furthermore, a particle with d
forces acting upon it is unstable by Theorem 3, as these forces
are necessarily cohemispheric, and thus there exists a ∈ Rd

such that a · fi � 0 for all i. By Theorem 4,
∑

fi �= 0 unless
fi = 0 for all i, and thus a particle with d nonzero forces acting
upon it is unstable.

By definition, if there are d + 1 noncohemispheric nonzero
forces, then no a exists for which a · fi � 0 for all i. Thus, for
all a ∈ Rd with at least one nonzero element, Theorem 4 states
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that there will be positive and negative projections, and thus
the net force can sum to zero without all forces being trivially
zero, and thus the particle is locally stable. �

Theorem 5. A particle with center r0 and with contacting
particles centered at {ri} is unstable if r0 ∈ ∂Conv(r0, {ri}).

Proof. We have two instances to prove. If r0 is an
extreme point, then by Definition 4, there exist a ∈ Rd and
b ∈ R where a · r0−b>0 while a · r j−b�0 for all
r j ∈ {ri}\r0. The contact forces on r0 are all of the
form f j = c j (r0 − r j ) with c j ∈ R and c j � 0. Thus,∑

j f j = ∑
j c j (r0 − r j ). Taking the projection on a, we

have
∑

j a · f j = ∑
j c j (a · r0 − a · r j ). Depending on the

sign of b, the nonzero terms are either all positive or all
negative, meaning that the sum cannot be zero unless all c j

are zero. Thus, by Theorem 4, either
∑

j f j �= 0, or f j = 0 for
all j. Either condition means that the particle is unstable.

If r0 were not an extreme point, then the sum
∑

j a · f j

could only be 0 if a · r j − b = 0 for all j. These forces would
then all be co-hemispheric, and thus by Theorem 4, either∑

j f j �= 0, or f j = 0 for all j, and thus the particle is unstable.
Here we note that this is a sufficient condition for instabil-

ity, and not a necessary one. If r0 is out of force balance with
neighboring contacts {ri}, but r0 /∈ ∂Conv(r0, {ri}), then r0 is
still unstable. �

Theorem 6. A particle with center r0 and with a nonempty
set of stable contacting particles centered at {ri} is locally
stable if and only if r0 /∈ ∂Conv(r0, {ri}) and the sum of forces
acting on the particle is zero.

Proof. The statement that r0 is locally stable if r0 /∈
∂Conv(r0, {ri}), and the sum of all forces acting on the
particle from {ri} is zero follows a recursive application of
Definition 3 and Theorem 5.

Next, we must prove that r0 /∈ ∂Conv(r0, {ri}) with stable
contacts {ri} and zero net force implies that r0 is locally
stable and thus has a set of stable forces acting on the particle
centered at r0 which both span Rd and sum to zero. Because
r0 /∈ ∂Conv(r0, {ri}), we know that r0 is neither an extreme
point of the convex hull, nor is it on the surface. Thus, no
a exists for which the contact forces, labeled {fi} have the
property a · fi � 0 for all i. These forces are thus noncohemi-
spheric, and so from Theorem 3, there must be d + 1 of them.
And because this particle has zero net force acting upon it, by
Corollary 4.1, the particle is locally stable.

An illustration of this theorem is given in Fig. 5. �

B. Stability via the radical Voronoi cell

Theorem 7. If i and j are hard particles with centers ri

and r j and radii σi and σ j and hi j = 0, then Bσi (ri ) ∩ Bσ j (r j )
contains exactly one point ci j where ci j ∈ ∂R(ri) and ci j ∈
∂R(r j ).

Proof. We define

ci j = ri + σi
r j − ri

|r j − ri| (4)

and note that |ci j − ri| = σi so that ci j ∈ Bσi (ri ) and |ci j −
r j | = |(r j − ri )| − σi. We then note that hi j = 0 implies σ j =
|(r j − ri )| − σi, and thus |ci j − r j | = σ j and so ci j ∈ Bσ j (r j ).

FIG. 6. The radical Voronoi diagram is shown between contact-
ing particles i and j with contact point ci j . A second contact point
between the two particles c′

i j is assumed, so that we can show
c′

i j = ci j via the triangle inequality.

To show that the intersection contains only one point, we
assume that c′

i j ∈ Bσi (ri ) ∩ Bσ j (r j ) so that |c′
i j − ri| � σi and

|c′
i j − r j | � σ j , but c′

i j �= ci j (as in Fig. 6). By the triangle
inequality, |r j − ri| � |ri − c′

i j | + |r j − c′
i j |, which becomes

the degenerate statement σi + σ j � σi + σ j . The degeneracy
implies a triangle of zero area, so that c′

i j lies on the line
between ri and r j , and by simple algebra, we find that
c′

i j = ci j . This is a contradiction, and thus the intersection

Bσi (ri ) ∩ Bσ j (r j ) contains only one point.
To show that ci j ∈ R(ri ) and ci j ∈ R(r j ), we calculate the

power of ci j with respect to each sphere. Here we find that
�ri,σi (ci j ) = �r j ,σ j (ci j ) = 0. The only lower power would
be negative (interior of a sphere), and because these are
hard spheres, that is not possible. Thus, ci j ∈ R(ri ) and ci j ∈
R(r j ). �

Corollary 7.1. In a hard particle system, Bσi (ri ) ∩ ∂R(ri )
contains only the contact points between particle i and its
contacting neighbors, centered at {r j}.

Proof. We know from Theorem 7 that Bσi (ri ) ∩ ∂R(ri )
contains the contact points between particle i and its contact-
ing neighbors, so we need now only show that it contains no
other points. Suppose b ∈ Bσi (ri ) ∩ ∂R(ri) and that b �= ci j

from Eq. (4) for any j. Points on ∂R(ri ) have equal power
with respect to at least one other sphere, which we will gener-
ically call r j . We have so far covered the case of zero power,
and now consider points with negative power. As per Defini-
tion 12, points of negative power are on the interior of both
spheres, i.e., b ∈ Bσi (ri ) ∩ Bσ j (r j ), but because i and j are
hard spheres Bσi (ri ) ∩ Bσ j (r j ) = ∅. Thus, points of negative
power are not in the intersection Bσi (ri ) ∩ ∂R(ri). Points of
positive power are not contained within Bσi (ri ) and are thus
not in the intersection Bσi (ri ) ∩ ∂R(ri ). Therefore, Bσi (ri ) ∩
∂R(ri ) contains only the contact points between particle i and
its contacting neighbors, centered at {r j}. �

Theorem 8. In a convex region K , if Bσ (a) ⊂ K and
Bσ (b) ⊂ K , then Bσ (c) ⊂ K for all c = (t − 1)a + tb where
t ∈ [0, 1].

Proof. From Definition 5, this property is true for every
individual point within the closed ball, so it is true for the
closed ball itself. An illustration of the concept is given in
Fig. 7, where every ball contained on the line between a and
b is contained in the convex region if the closed balls centered
at a and b are contained in the region.
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FIG. 7. An illustration of the fact that if two closed balls exist
within a convex region (centered at a and b, respectively), every
closed ball on the line between the two is also contained in the region.

Remark: We note that a further generalization of The-
orem 8 is true when we have different radii balls at the
endpoints Bσa (a) and Bσb (a), where then the interpolated ball
has radius σc = (t − 1)σa + tσb. This generalization is, how-
ever, not necessary for our purposes and would potentially
obscure the results.

Theorem 9. If M[R(r0)] is not unique in a hard particle
system, then the particle centered at r0 is not locally stable.

Proof. We assume M[R(r0)] is not unique, such that
Bσ (r1) ⊂ R(r0) and Bσ (r2) ⊂ R(r0) with r1 �= r2 and there is
no solution to Bσ ′ (r3) ⊂ R(r0) where σ ′ > σ . We then assume
that the particle centered at r0 is locally stable and try to find a
contradiction. If the particle is stable, then there exist at least
d + 1 noncohemispheric points ci j given by Eq. (4) which, by
Theorem 7, have the property ci j ∈ Bσ0 (r0) ∩ ∂R(r0). Because
the particle centered at r0 is fully locally constrained, there ex-
ist no dilations or translations which maintain the hard sphere
condition. We now have two scenarios to consider, which each
contain a contradiction: σ < σ0 and σ � σ0.

If σ < σ0, then neither Bσ (r1) nor Bσ (r2) represent the
MIS, because Bσ0 (r0) ⊂ R(r0) has a larger radius. If σ �
σ0, then Bσ0 (r1) ⊂ Bσ (r1) ⊂ R(r0). Theorem 8 states that all
closed balls of radius σ0 on the straight line between r0 and
r1 are also contained in R(r0). However, because the particle
centered at r0 with radius σ0 is stable, no translations T exists
such that T [Bσ0 (r0)] ⊂ R(r0). Because no case relating σ and
σ0 exists without a contradiction, this implies that if M[R(r0)]
is not unique in a hard particle system, then the particle cen-
tered at r0 is not locally stable. �

A packing with highly degenerate (nonunique) maximum
inscribed spheres is illustrated in Fig. 8, where clearly the
particles are not stable.

Corollary 9.1. If M(K ) is unique for a polytope K , then
M(K ) ∩ ∂K contains at least d + 1 noncohemispheric points.

Proof. If M(K ) is unique, then there are no translations
represented by the transformation T which can be done such
that T [M(K )] ⊂ K . Thus, M(K ) is fully constrained by the
boundary ∂K . By Corollary 4.1, if we impose a fictive force
on M(K ) from each point of contact {ci} between M(K ) and
∂K , then there must be at least d + 1 noncohemispheric ci for
M(K ) to be stable. Thus, M(K ) ∩ ∂K contains at least d + 1
noncohemispheric points. �

FIG. 8. An example of a radical Voronoi diagram (orange lines)
for a set of particles (blue) which is highly degenerate. Here, because
the MIS of each particle is not unique despite having radii equal to
that of the particles, none of the particles are locally stable.

Theorem 10. In a packing of hard particles, a particle with
center r0 and radius σ0 is locally stable if and only if M[R(r0)]
is unique and has center r0 and radius σ0. A visual represen-
tation of this theorem is shown in Fig. 9.

Proof. First, we must prove that in a hard sphere system, a
particle with center r0 and radius σ0 being locally stable im-
plies that M[R(r0)] is unique and has center r0 and radius σ0.
Following the logic of the proof of Theorem 9, we assume that
M[R(r0)] has center r1 and radius σ1 with r1 �= r0 and σ1 �= σ0

and find a contradiction to show that r1 = r0 and σ1 = σ0.
If σ1 < σ0, then this does not correspond to the maximum
inscribed sphere. If σ1 � σ0, then Bσ0 (r1) ⊂ Bσ1 (r1) ⊂ R(r0)
and thus by Theorem 8 Bσ0 (r2) ⊂ R(r0) for all r2 on a straight
line between r0 and r1. But because Bσ0 (r0) is locally stable,
no translations or dilations exist which remain in R(r0), so
r1 = r0 and σ1 = σ0.

Second, we must prove that in a hard sphere system,
for a particle centered at r0 with radius σ0, M[R(r0)] being
unique and having center r0 and σ0 implies that the particle
is stable. This follows immediately from Corollary 9.1, as the
particle has d + 1 noncohemispheric points of contact with
R(r0), which by Corollary 7.1, correspond to contacts with

FIG. 9. The radical Voronoi diagram (black lines) is computed
for a set of particles of different radii with contacts displayed as
blue lines. All blue particles, labeled i, have M[R(ri )] = Bσi (ri ) and
are thus stable. The red particle, which we will call 0 is a rattler,
and its MIS is shown as a dashed magenta line. We see clearly that
M[R(r0)] �= Bσ0 (r0 )
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neighboring particles. Thus, by Corollary 4.1, the particle
centered at r0 with radius σ0 is stable.

IV. ALGORITHMIC COMPLEXITY

Theorems 6 and 10 provide a natural recursive algorithm
for determining the stable set of particles in a packing, and,
through its complement, the set of rattlers. The algorithm
begins with a tentative statement that all particles are stable,
and it loops over each particle testing for stability, taking
the function isStable(i) from either Theorem 6, Theorem 10,
or Eq. (12) of Ref. [10], considering only the stable set of
particles. The algorithm ends when no changes are made to
the stable list in a full loop. The structure of the algorithm is
similar to that of Ref. [10], and as expected, it produces an
identical stable list.

Algorithm 1 Global Stability Algorithm [42]

1: i ∈ stableList ∀i
2: unstableList = ∅
3: flip ← true
4: while flip do
5: flip ← f alse
6: for i ∈ stableList do
7: if isUnstable(i) then
8: flip ← true
9: Move i from stableList to unstableList
10: end if
11: end for
12: end while
13: Return stableList

The worst-case scenario for this algorithm is a packing
in which only a single particle is initially unstable, but its
removal destabilizes one of its neighbors, and so on. Such a
situation will require N iterations through the algorithm, each
of which takes O(N ) time, yielding a total worst case runtime
of O(N2). We note, however, that no typical case approaches
this complexity. The method of Ref. [11], meanwhile, scales
as at least O(d3N3) [34].

The only difference between the methods of Ref. [10],
Theorem 6, and Theorem 10 is the speed of the function
isStable(i). For a particle with n contacting particles [where
n ∼ O(d )], the linear programming method scales as O(n2+a)
where a = 1

18 [43] while the convex hull scales as O(n�d/2�)
in the worst case scenario, where �·� is the floor func-
tion [44]. The radical Voronoi diagram for an individual
cell can be computed in O(n�d/2�) where �·� is the ceiling
function. Thus, while the radical Voronoi method is slower
than the convex hull method in odd dimensions, it is of
the same order in even dimensions. The calculation of the
MIS is then either a linear programming problem [45,46]
or a minimization problem [13] whose complexity has not
yet been interrogated. The worst case scenario then makes
this calculation the rate determining step, and it is thus no
faster than the linear programming methods of Ref. [10].
By comparison, we see that the convex hull algorithm is

faster than the linear programming algorithm for at least
d < 6.

V. FURTHER EXTENSIONS

We have shown that the convex hull can be used to quickly
determine the stability of individual spheres in a packing with
only minimal requirements on the interparticle potential while
the radical Voronoi diagram can be used in the case of hard
spheres. It is straightforward to show that the construction can
be applied more generally in a variety of cases. Here, we list
several:

(1) In a spring network under compression, an individual
node is unstable if it is on the surface of the convex hull of its
connecting nodes.

(2) A particle of any shape is unstable if the only forces
acting on it are point forces directed toward its center of mass,
and the center of mass is on the surface of the convex hull of
the contact points and the center of mass.

(3) In the presence of an external field (electric, gravi-
tational, etc.) which exists within the space spanned by the
particle contact forces, the force on each particle from the field
can be treated as a fictive contact acting on the particle surface.
The minimal number of contacts required for a particle to be
stable in such a field is then d , and Theorem 6 should thus be
modified to state that a particle is locally stable if and only if
r0 /∈ ∂Conv(r0, {ci}, c f ), where {ci} are given by Eq. (4), and
c f is the inward-pointing vector denoting the external force
field.

(4) In Mari-Kurchan (MK) interactions [47,48], where the
distance between particles is given by hMK

i j = |ri−r j+�i j |
σi+σ j

where
�i j is a random vector with �i j = −� ji, a particle r0 with
contacts {r j} is unstable if r0 ∈ ∂Conv(r0, {r j + �i j}). This
method was used in Ref. [34]. Note that this is true despite
not technically being a central force potential.

(5) Several recent studies have analyzed soft sphere sys-
tems during energy minimization [31,34,49–51], wherein it
may be important to study the evolution of rattlers and stable
subsystems. Here, the convex hull theorem may be used, with
the additional caveat that a particle is only locally stable if the
sum of all forces acting on it is zero, and if the forces acting
on it span Rd .

(6) Following the logic of Sec. III B, we conjecture that
Theorem 10 also holds for additively weighted Voronoi cells
and any generalization of Voronoi cells G for which the
contact point of two hard spheres (i and j) is contained on
the surface of the generalized Voronoi cell, i.e., Bσi (ri ) ∩
Bσ j (r j ) ∈ ∂G(ri ) and Bσi (ri ) ∩ Bσ j (r j ) ∈ ∂G(r j ). However,
these cells are generically nonconvex, and so some of the tools
we have used do not suffice.

These extensions show the utility of our methods, which
extend beyond simple sphere packings. It is our hope that this
work not only provides a simple computational tool, but helps
to illuminate the interplay between geometry and mechanical
rigidity.
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