
Supplementary Material

I. EXAMPLES OF DISTRIBUTIONS ν

The Dirichlet distribution for ν is specified by a choice of k ∈ Z≥1 and α⃗ = (α−k, . . . , αk) ∈ R2k+1
>0 .

It assigns probability density proportional to
∏k

j=−k ξ(j)
αj to each vector ξ = (ξ(−k), . . . , ξ(k)) ∈

Rk
≥0 satisfying

∑k
j=−k ξ(j) = 1. Then, we set ξ(i) = 0 for i /∈ [−k, k] so that ξ is defined on Z. Note

that a sample ξ under ν defines a probability distribution on Z due to the imposed normalization
and non-negativity. When αj ≡ 1 for all −k ≤ j ≤ k, we call the resulting Dirichlet distribution
uniform(k) since (ξ(−k), . . . , ξ(k)) is uniformly distributed over vectors in Rk

≥0 that sum up to 1.
The normalized i.i.d. distribution for ν is specified by a choice of k ∈ Z≥1 and a choice of prob-

ability distribution on R≥0. Let X−k, . . . , Xk be chosen independently according to the specified

probability distribution, and then define ξ(i) = Xi(
∑k

j=−k Xj)
−1 for i ∈ [−k, k] and ξ(i) = 0 oth-

erwise. Such ξ are normalized to sum to 1 and are non-negative, and hence define a probability
distribution on Z. When the Xi are Gamma distributed with parameter α, the resulting measure
on ξ matches the Dirichlet distribution with αi ≡ α.
The random delta distribution for ν is specified by k ∈ Z≥1. Two numbers X1, X2 are drawn

uniformly without replacement from {−k, . . . , k}. We set ξ(X1) = ξ(X2) = 1/2 and ξ(i) = 0 for all
i ̸= X1, X2.

II. CONVERGENCE TO THE STOCHASTIC HEAT EQUATION

We begin by summarizing the results in the forthcoming work [1]. These results also follow from
[2]. We show that for N ∈ Z>0, T ∈ N−1Z≥0 and X ∈ (2DN)−1/2(Z− cNT ), the scaled moderate
deviations of the tail probability for a single random walker converges as N → ∞:

N1/4CN,T,X√
2D

Pξ(R1(NT ) ≥ cNT +
√
2DNX) ⇒ Z̃(T,X) (S1)

with scaling parameters

CN,T,X =

exp

{
cN

2DN1/4
T +

1√
2D

N1/4X

}
(∑

i∈Z
Eν [ξ (i)] exp

{
i

2DN1/4

})NT
, cN = N3/4 +

∑
i∈Z Eν [ξ (i)] i

3

2(2D)2
N1/2.

(S2)
The convergence is shown in [1] at the level of the first two moments (stronger process-level con-

vergence is shown in [2]), and the limiting process Z̃(T,X) is the solution to the multiplicative

Stochastic Heat Equation (mSHE) with Z̃(0, X) = δ(X) initial data:

∂T Z̃ =
1

2
∂2
X Z̃ +

√
2λext

(2D)3/2
Z̃η. (S3)
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Here η(T,X) is a space-time Gaussian white noise (i.e. E[η(T,X)] = 0 and E[η(T,X)η(T ′, X ′)] =
δ(X −X ′)δ(T − T ′) where δ is the Dirac delta function). The noise strength is controlled by the
Einstein diffusion coefficient D defined in (4) and λext.
At the full level of generality of RWRE models we introduced in the RWRE models section, [1]

(see also [2]) provides a somewhat involved formula for λext:

λext :=
Varν

(
Eξ[Y ]

)∑∞
l=0 µ̃ (l)E [∆ (t+ 1)−∆(t) | ∆(t) = l]

. (S4)

The numerator here is defined in terms of Y , a random jump distributed according to ξ. As in
(10), this numerator is equal to 2Dext. The denominator requires more explanation. Consider two
random walks R1 and R2 distributed according to the measure P (i.e., after integrating over the law
ν of the environment). These walks are not independent as they are coupled to the same (integrated
out) environment—we call these the two-point motions as they have the law of two tracer particles
when the environment is hidden. Define the gap between them to be

∆(t) := |R1(t)−R2(t)|.

There exists a unique (infinite mass) invariant measure for V (t) := R1(t) − R2(t) and let µ(l) be
the mass assigned to l ∈ Z with the normalization that µ(0) = 1 (see e.g., [3] for background on
invariant measures for Markov chains). The corresponding invariant measure for ∆(t) is therefore

µ̃ (l) :=

{
1 if l = 0

2µ(l) if l > 0
. (S5)

This invariant measure can be understood physically as follows. Start two particles near each
other and let them diffuse in their common environment. After a relatively long time, measure the
distance between them. Repeat this for many different environments, thus building up a histogram
of the distances between these two-point motions. The typical distance will be large, but if we cutoff
to consider relatively short distances, and normalize the histogram to put weight 1 at distance 0,
then it will converge to µ̃ (l). A slightly different way that this same measure should arise is from
surveying the inter-particle distances over all particles in a many-particle diffusion. Normalizing
the histogram of these distances to be 1 at distance 0, will yield a histogram that converges to µ̃ (l)
at distance l. This should hold for a single environment since the inter-particle distances (on the
short-scale that we are considering) will generally feel different parts of the environment, and hence
experience some averaging.
The denominator in (S4) is independent of t and it has the interpretation as the expected change

in the two-point motion gap when started under its invariant measure. For large enough l (since
we have assumed a finite range for the jump distribution) the expected change of the gap will be
zero and hence the sum will be a finite one.
We will show that λext simplifies considerably for a wide class of distributions ν in Section VI,

and (before that) in the next section we will explain (in the spirit of [4, 5]) how we go from this
mSHE convergence result to our extreme diffusion theoretical predictions.
However, let us first briefly summarize the approach used in [1] to derive this mSHE convergence

result. First of all, (S1) is only demonstrated therein at the level of convergence of first and second
moments. Convergence of higher moments follows similarly as noted below. Since the moments of
the mSHE do not characterize its distribution, more work is needed, as in [2], to show convergence
in distribution, or convergence of the space-time process.
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The second moment of the LHS in (S1) can be expressed via a discrete Feynman-Kac formula in
terms of the expectation of the exponential of the self-intersection time for the two-point motion
(R1, R2) under a tilting of the measureP (high integer moments involve higher order self-intersection
times). For the mSHE, all integer moments can be expressed in terms of the expectation of the
exponential of the pair local times at zero for independent Brownian motions (this is the replica
method, see [6, 7]). The k-point motion converges diffusively to k independent Brownian motions,
yet the discrete self-intersection time does not converge to the local time at zero for the Brownian
motions.
This failure of self-intersection time to local time convergence may seem surprising, but a very

simple example should convince the reader that such convergence is more subtle. For instance,
imagine two independent SSRWs, one started at 0 and one started at 1. They converge jointly to
two Brownian motions, yet their intersection time is always 0 (they are on different sublattices)
and hence does not converge to the local time at 0 for the Brownian motions.
A discrete version of the Tanaka formula—which, for a Brownian motion B, shows that |B(t)| =∫ t

0
sgn(B(s))dB(s) + L(t) where sgn(x) is the derivative of the absolute value function |x| (set

to be 0 at 0) and where L(t) is the local time at zero up to time t—is used in [1] to identify
the discrete quantity that converges to the Brownian local time L(t). That discrete local time
involves reweighting the expected change in distance between the two-point motion according to
its invariant measure. This allows us to identify the limit of the self-intersection time and leads to
the denominator in (S4).

III. APPROXIMATING THE TAIL PROBABILITY

After taking logarithms in (S1), we see that as N → ∞

ln(Pξ(R1(NT ) ≥cNT +
√
2DNX))

≈ − cNT

2DN1/4
− N1/4X√

2D
+NT ln

(∑
i∈Z

Eν [ξ (i)] exp

{
i

2DN1/4

})
− ln

(
N1/4

√
2D

)
+ h̃(T,X)

(S6)

where h̃(T,X) = ln(Z̃(T,X)) solves the KPZ equation with narrow wedge initial data and with
λext-dependent noise strength (we now also include tildes on the X and T variables to simplify the
below change of variables),

∂T̃ h̃ =
1

2
∂2
X̃
h̃+

1

2
(∂X̃ h̃)2 +

√
2λext

(2D)3/2
η.

Defining h(T,X) = h̃(T̃ , X̃) with T =
4λ2

ext

(2D)3 T̃ and X = 2λext

(2D)3/2
X̃, h solves the standard coefficient

KPZ equation

∂Th =
1

2
∂2
Xh+

1

2
(∂Xh)2 + η.

We also have that as N → ∞,(∑
i∈Z

Eν [ξ (i)] exp

{
i

2DN1/4

})
≈ N−1/2

4D
+

∑
i∈Z Eν [ξ (i)] i

3

6(2D)3
N−3/4 +O

(
N−1

)
.



4

Substituting this into (S6) and using our transformation to the KPZ equation, we find

ln

(
Pξ

(
R1(NT ) ≥ N3/4T +

m3N
1/2T

2(2D)2
+

√
2DNX

))
≈ −N1/2T

4D
− N1/4X√

2D
− N1/4Tm3

3(2D)3
+ ln

(
N1/4

√
2D

)
+ h

(
4λ2

ext

(2D)3
T,

2λext

(2D)3/2
X

)
+O(T )

where m3 =
∑

i∈Z Eν [ξ (i)] i
3. We now introduce the time t := NT , velocity v := T 1/4, and rescaled

position y = X
v2 . Making these substitutions, we find

ln

(
Pξ

(
R1(t) ≥ vt3/4 +

m3

2(2D)2
v2t1/2 +

√
2Dty

))
≈ − v2

4D
t1/2 − vy√

2D
t1/4 − v3m3

3(2D)3
t1/4 + ln

(
t1/4√
2Dv

)
+ h

(
4λ2

ext

(2D)3
v4,

2λext

(2D)3/2
yv2
)
+O(v4).

(S7)

IV. EXTREME FIRST PASSAGE TIME THEORETICAL PREDICTIONS

Here we derive asymptotic predictions for the means and variances of EnvNL , SamN
L and MinNL .

Much of this analysis follows from [5], where they derived predictions for the nearest neighbor case
with a uniform distribution.
We start by substituting y = 0 and L = vt3/4 into (S7) such that

ln

(
Pξ

(
R1(t) ≥ L+

m3L
2

2(2D)2t

))
≈ − L2

4Dt
− m3L

3

3(2D)3t2
+ln

(
t√
2DL

)
+h

(
4λ2

extL
4

(2D)3t3
, 0

)
+O

(
L4

t3

)
.

(S8)
We can now drop all subdominant terms as they will not contribute to the asymptotic predictions
(though they could offer some higher-order corrections that we do not probe here). This yields a
rougher approximation where we do not track the order of the error

ln
(
Pξ
(
R1(t) ≥ L

))
≈ − L2

4Dt
+ h

(
4λ2

extL
4

(2D)3t3
, 0

)
. (S9)

We now utilize the non-backtracking approximation Pξ(R1(t) ≥ L) ≈ Pξ(τL ≤ t) (as discussed in
[5]) as L gets large to yield

ln
(
Pξ (τL ≤ t)

)
≈ − L2

4Dt
+ h

(
4λ2

extL
4

(2D)3t3
, 0

)
. (S10)

We now substitute EnvNL into this equation, recalling that EnvNL is approximately the time t such
that Pξ(τL ≤ t) = 1/N (in fact, the minimum time t satisfying Pξ(τL ≤ t) ≥ 1/N though this
difference is negligible):

− ln (N) ≈ − L2

4DEnvNL
+ h

(
4λ2

extL
4

(2D)3
(
EnvNL

)3 , 0
)
. (S11)
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We can solve this equation perturbatively for EnvNL . The term − L2

4DEnvN
L

in (S11) is dominant for

large L, which yields the first-order estimate

EnvNL ≈ TN
L :=

L2

4D ln(N)
. (S12)

We now consider a small perturbation about TN
L such that EnvNL = TN

L +δ where δ ≪ TN
L contains

the randomness of EnvNL . Substituting this into (S11), we find

− ln (N) ≈ − L2

4D(TN
L + δ)

+ h

(
4λ2

extL
4

(2D)3
(
TN
L + δ

)3 , 0
)
. (S13)

Since δ ≪ TN
L , we approximate − L2

4D(TN
L +δ)

≈ − L2

4DTN
L

+ L2

4D(TN
L )2

δ and
4λ2

extL
4

(2D)3(TN
L +δ)

3 ≈ 4λ2
extL

4

(2D)3(TN
L )

3 .

As such we can solve for δ, yielding

δ ≈ − L2

4D ln(N)2
· h
(

4λ2
extL

4

(2D)3(TN
L )3

, 0

)
= − L2

4D ln(N)2
· h
(
32λ2

ext(ln(N))3

L2
, 0

)
.

Therefore, the mean and variance of EnvNL is given by

E
[
EnvNL

]
≈ L2

4D ln(N)
(S14)

Var
(
EnvNL

)
≈ L4

(4D)2 ln(N)4
Var

(
h

(
32λ2

ext(ln(N))3

L2
, 0

))
. (S15)

We now consider the limit where L ≫ (ln(N))3/2. In this limit, we simplify (S15) using the
small-time KPZ Gaussian approximation

h(s, 0) ≈ − s

24
− ln

(√
2πs
)
+
(πs

4

)1/4
Gs (S16)

where Gs converges as s → 0 to a standard Gaussian, see for instance [8, 9]. Thus, for L ≫
λext(ln(N))3/2 we find

Var
(
EnvNL

)
≈ λext

√
2πL3

8D2 ln(N)5/2
. (S17)

We now derive the distribution, and subsequently the mean and variance, for the randomness
due to sampling random walks, SamN

L . We begin by using the approximation, (1 + x)N ≈ exN for
x ≪ 1 and N → ∞. Therefore, for N → ∞ and small Pξ(τL ≤ t), we approximate (15) as

ln
(
Pξ(SamN

L > t)
)
≈ −NPξ(τL ≤ t+ EnvNL ). (S18)

Substituting (S10) yields

ln
(
Pξ(SamN

L > t)
)
≈ −Nexp

{
− L2

4D(t+ EnvNL )

}
(S19)
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where we have dropped all but the leading order term. We now assume EnvNL ≫ t, which is

justified because, as we will show, E
[
EnvNL

]
≫ E

[
SamN

L

]
. When EnvNL ≫ t, we approximate

(t+ EnvNL )−1 ≈ 1
EnvN

L

(
1− t

EnvN
L

)
such that

ln
(
Pξ(SamN

L > t)
)
≈ −Nexp

{
− L2

4DEnvNL
− tL2

4D
(
EnvNL

)2
}
. (S20)

Now replacing EnvNL with its leading order approximation, TN
L , from (S12), we find

ln
(
Pξ(SamN

L ≤ t)
)
≈ −exp

{
−4D ln(N)2t

L2

}
.

By replacing EnvNL with TN
L we have assumed that SamN

L and EnvNL are independent since SamN
L

no longer depends on the randomness of EnvNL . Though likely theoretically justifiable, this approx-

imation is a fortiori justified by our numerics as shown in Figure 2. From this we find that −SamN
L

is Gumbel distributed with mean and variance

E[SamN
L ] ≈ − γL2

4D ln(N)2
(S21)

Var(SamN
L ) ≈ π2L4

96D2 ln(N)4
(S22)

where γ ≈ 0.577 is the Euler-Mascheroni constant. Notice that as L and N tend to infinity with
L ≫ ln(N)3/2, E

[
SamN

L

]
≪ E

[
EnvNL

]
which justifies the approximation used in (S20).

We solve for the mean and variance of MinNL by rearranging our definition of SamN
L such that

MinNL = SamN
L + EnvNL . Since E

[
SamN

L

]
≪ E

[
EnvNL

]
,

E
[
MinNL

]
≈ L2

4D ln(N)
. (S23)

Since EnvNL and SamN
L are independent, Var

(
MinNL

)
= Var

(
SamN

L

)
+Var

(
EnvNL

)
such that

Var
(
MinNL

)
≈ π2L4

96D2 ln(N)4
+ λext

√
2πL3

8D2 ln(N)5/2
(S24)

in the limit L ≫ ln(N)3/2.

V. EXTREME LOCATION THEORETICAL PREDICTIONS

Here we derive asymptotic predictions for the means and variances of EnvNt , SamN
t and MaxNt .

As above, much of this analysis follows from [4], where they derived predictions for the nearest
neighbor case with a uniform distribution. The argument proceeds similarly to the first passage time
analysis. Starting at (S9), we substitute EnvNt for the position L such that Pξ(R1(t) ≥ L) = 1/N ,
thus yielding

− ln (N) ≈ −
(
EnvNt

)2
4Dt

+ h

(
4λ2

ext

(
EnvNt

)4
(2D)3t3

, 0

)
. (S25)
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The first term on the right-hand side dominates and yields the first-order estimate

EnvNt ≈ XN
t :=

√
4Dt ln(N). (S26)

We consider a small perturbation, δ, about XN
t such that EnvNt = XN

t + δ where δ ≪ XN
t .

Substituting this into (S25) and only taking the highest order terms yields

δ ≈

√
Dt

ln(N)
h

(
8λ2

ext ln(N)2

Dt
, 0

)
. (S27)

Therefore, the mean and variance of EnvNt satisfy

E
[
EnvNt

]
≈
√
4Dt ln(N) (S28)

Var
(
EnvNt

)
≈ Dt

ln(N)
Var

(
h

(
8λ2

ext ln(N)2

Dt
, 0

))
. (S29)

When t ≫ λ2
ext

D ln(N)2, we use the small argument expansion of the KPZ equation in (S16) to
approximate

Var
(
EnvNt

)
≈ λext

√
2πDt. (S30)

We now derive the distribution for the randomness due to sampling random walks, SamN
t . For

N → ∞ and small Pξ(R(t) ≤ x+ EnvNt ), we approximate (16) as

ln(Pξ(SamN
t ≤ x)) ≈ −NPξ(R(t) ≤ x+ EnvNt ). (S31)

Substituting (S9) yields

ln(Pξ(SamN
t ≤ x)) ≈ −Nexp

{
− (x+ EnvNt )2

4Dt

}
(S32)

where we have only kept the leading order term of Pξ(R(t) ≤ x). We assume EnvNt ≫ x which

is justified because, as we will show, E
[
EnvNt

]
≫ E

[
SamN

t

]
. We use this to approximate (x +

EnvNt )2 ≈ (EnvNt )2 + 2EnvNt x such that

ln(Pξ(SamN
t ≤ x)) ≈ −Nexp

{
− (EnvNt )2

4Dt
− EnvNt x

2Dt

}
. (S33)

Replacing EnvNt with its first-order approximation, XN
t , in (S26), we find

ln(Pξ(SamN
t ≤ x)) ≈ − exp

{
−
√

ln(N)

Dt
x

}
. (S34)

Therefore, SamN
t is Gumbel distributed with mean and variance

E[SamN
L ] ≈ γ

√
Dt

ln(N)
(S35)

Var(SamN
L ) ≈ π2Dt

6 ln(N)
. (S36)
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Notice that as t → ∞, E
[
EnvNt

]
≫ E

[
SamN

t

]
which justifies our approximation in (S33).

We solve for the mean and variance of MaxNt by rearranging our definition of SamN
t such that

MaxNt = SamN
t + EnvNt . Since E

[
EnvNt

]
≫ E

[
SamN

t

]
,

E
[
MaxNt

]
≈
√
4Dt ln(N). (S37)

Since EnvNt and SamN
t are assumed to be asymptotically independent, Var

(
MaxNt

)
=

Var
(
EnvNt

)
+Var

(
SamN

t

)
so

Var
(
MaxNt

)
≈ π2Dt

6 ln(N)
+ λext

√
2πDt (S38)

when t ≫ λ2
ext ln(N)2.

VI. CALCULATING THE COEFFICIENT FOR SEVERAL DISTRIBUTIONS

We demonstrate that the coefficient λext in the mSHE/KPZ equation limit (S1) simplifies to the
expression in (9) for a class of distributions ν including those introduced earlier (i.e., the Dirichlet,
normalized i.i.d., and random delta distributions), as well as all nearest neighbor distributions.

A. General Model

We study the following class of distributions such that:

There exists some c ∈ (0, 1) such that for all i ̸= j Eν [ξ(i)ξ(j)] = cEν [ξ(i)]Eν [ξ(j)] . (S39)

We will also initially assume that the difference walk V (t) = R1(t) − R2(t) (where R1 and R2 are
distributed according to P) is irreducible (i.e., V (t) can reach any location on Z when started from
0), although we will later also consider the nearest neighbor model in Section VIE, which does
not satisfy this condition as the difference walk V (t) in that case is restricted to the even integer
sublattice. A sufficient condition for V (t) to be irreducible is that

Eν [ξ (i)] > 0 for all i ∈ {−1, 0, 1}. (S40)

We compute λext by simplifying the numerator and denominator of (S4) in terms of c and then
matching this to (9). The numerator of (S4) simplifies to

Varν
(
Eξ[Y ]

)
=
∑
i∈Z

(1− c)Eν [ξ(i)] i
2. (S41)

Simplifying the denominator of (S4) is much more involved. We do this in three steps. First, we
compute the invariant measure, µ̃ (l) and show that

µ̃ (l) =

{
1 if i = 0

2c if i ̸= 0
. (S42)
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Then we simplify the expression E [∆ (t+ 1)−∆(t) | ∆(t) = l] and show that (without using the
assumption (S39))

E [∆ (t+ 1)−∆(t) | ∆(t) = l] =


∑
i,j∈Z

|i− j|Eν [ξ(i)ξ(j)] l = 0

∑
|i−j|>l

(|i− j| − l)Eν [ξ (i)]Eν [ξ (j)] l > 0
. (S43)

Lastly, we combine these two results to compute the sum over l and show that

∞∑
l=0

E [∆ (t+ 1)−∆(t) | ∆(t) = l] µ̃ (l) = 2c
∑
i∈Z

i2Eν [ξ (i)] . (S44)

The invariant measure: We now compute the invariant measure for the walk V (t). The transition
probabilities of V are given by

p(i, j) := P(V (t+ 1) = j | V (t) = i) =

{∑
k∈Z Eν [ξ(k)ξ(k − j)] if i = 0∑
k∈Z Eν [ξ (k)]Eν [ξ (k − j + i)] if i ̸= 0.

. (S45)

Notice that if i, j ̸= 0, then by a change of variables, we have

p(i, j) =
∑
k∈Z

Eν [ξ (k − j + i)]Eν [ξ (k)]

=
∑
k̃∈Z

Eν

[
ξ
(
k̃
)]

Eν

[
ξ
(
k̃ − i+ j

)]
= p(j, i). (S46)

It also follows from (S39) that

p(0, j) = cp(j, 0). (S47)

We claim that the unique invariant measure of V (t) (up to multiplication by a constant coefficient)
is given by µ(l) = c for all l ̸= 0 and µ(0) = 1. We check this by showing µ(·) satisfies the detailed
balance equation,

µ(i)p(i, j) = µ(j)p(j, i) (S48)

for all i, j ∈ Z. This also shows that the walk V (t) is reversible with respect to µ(·).
The detailed balance condition is clearly true for the case i = j = 0, and for i, j ̸= 0 it follows

from (S46). We now consider the case when i = 0 and j ̸= 0. Substituting µ(j) = c and µ(0) = 1
into (S48), we obtain

p(0, j) = cp(j, 0),

which is true by (S47). Therefore, our claim that µ(l) = c for l ̸= 0 and µ(0) = 1 is justified.
It follows from (S5) that

µ̃ (l) =

{
1 if i = 0

2c if i ̸= 0
(S49)
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as desired.

Simplification of the expectation value: We now simplify E [∆ (t+ 1)−∆(t) | ∆(t) = l] to show
it is given by (S43). For l = 0, the two walkers R1 and R2 are both at the same site; therefore,
they use the same jump rate such that

E [∆ (t+ 1)−∆(t) | ∆(t) = 0] =
∑
i,j∈Z

|i− j|Eν [ξ(i)ξ(j)] ,

which agrees with (S43).

For l > 0, the two walkers R1 and R2 are at different sites; therefore, they use independent jump
rates such that

E [∆ (t+ 1)−∆(t) | ∆(t) = l] =
∑
i,j∈Z

(|l + i− j| − l)Eν [ξ (i)]Eν [ξ (j)] . (S50)

We now break this sum up into two parts: when |i − j| ≤ l and |i − j| > l. For |i − j| ≤ l, we
simplify

|l + i− j| − l =

{
i− j if i ≥ j

j − i if i < j,
.

Therefore,∑
|i−j|≤l

(|l + i− j| − l)Eν [ξ (i)]Eν [ξ (j)] =
∑
i<j

(j − i)Eν [ξ (i)]Eν [ξ (j)] +
∑
i≥j

(i− j)Eν [ξ (i)]Eν [ξ (j)]

= 0

after swapping the indices of the second sum.

For |i− j| > l, we find

|l + i− j| − l =

{
i− j if i ≥ j

j − i− 2l if i < j
.

Substituting this into (S50), we are left with

E [∆ (t+ 1)−∆(t) | ∆(t) = l] =
∑

|i−j|>l

(|l + i− j| − l)Eν [ξ (i)]Eν [ξ (j)]

=
∑

i−j>l

(|i− j|)Eν [ξ (i)]Eν [ξ (j)] +
∑

j−i>l

(|i− j| − 2l)Eν [ξ (i)]Eν [ξ (j)]

=
∑

|i−j|>l

(|i− j| − l)Eν [ξ (i)]Eν [ξ (j)] .

Thus, E [∆ (t+ 1)−∆(t) | ∆(t) = l] is given by (S43).

Computing λext: We now compute λext using our formula for µ̃ (l) and
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E [∆ (t+ 1)−∆(t) | ∆(t) = l]. Substituting (S49) and (S43), we find

∞∑
l=0

E [∆ (t+ 1)−∆(t) | ∆(t) = l] µ̃ (l) = c
∑
i,j∈Z

|i− j|Eν [ξ (i)]Eν [ξ (j)] + 2c

∞∑
l=1

∑
|i−j|>l

(|i− j| − l)Eν [ξ (i)]Eν [ξ (j)]

(S51)

= c

∞∑
l=0

∑
|i−j|>l

(2− 1l=0)(|i− j| − l)Eν [ξ (i)]Eν [ξ (j)]

(S52)

after combining the two sums. Now we break up the second sum over i and j such that

∞∑
l=0

E [∆ (t+ 1)−∆(t) | ∆(t) = l] µ̃ (l)

= c
∞∑
l=0

∑
j∈Z

 ∞∑
i=j+l+1

(2− 1l=0)(i− j − l)Eν [ξ (i)]Eν [ξ (j)] +

j−l−1∑
i=−∞

(2− 1l=0)(j − i− l)Eν [ξ (i)]Eν [ξ (j)]


= c

∑
j∈Z

 ∞∑
i=j+1

i−j−1∑
l=0

(2− 1l=0)(i− j − l)Eν [ξ (i)]Eν [ξ (j)] +

j−1∑
i=−∞

j−i−1∑
l=0

(2− 1l=0)(j − i− l)Eν [ξ (i)]Eν [ξ (j)]

 ,

where in the second step, we switch the order of the sums (which is justified by our assumption
that ξ is finite range). Notice that since Eν [ξ (i)] does not depend on l we can now evaluate the
sums over l. This yields

∞∑
l=0

E [∆ (t+ 1)−∆(t) | ∆(t) = l] µ̃ (l) = c
∑
j∈Z

 ∞∑
i=j+1

(i− j)2Eν [ξ (i)]Eν [ξ (j)] +

j−1∑
i=−∞

(i− j)2Eν [ξ (i)]Eν [ξ (j)]


= c

∑
i,j∈Z

(i− j)2Eν [ξ (i)]Eν [ξ (j)]

= c
∑
i,j∈Z

(i2 + j2)Eν [ξ (i)]Eν [ξ (j)]

= 2c
∑
i∈Z

i2Eν [ξ (i)]

after using
∑

i∈Z Eν [ξ (i)] i = 0. Thus, we find

λext =
Varν

(
Eξ[Y ]

)∑∞
l=0 E [∆ (t+ 1)−∆(t) | ∆(t) = l] µ̃ (l)

=
1− c

2c
. (S53)

We now match this to (9). We recall that D = 1
2

∑
i∈Z i

2Eν [ξ (i)] and that Dext =
1
2Varν

(
Eξ[Y ]

)
where Varν

(
Eξ[Y ]

)
is given in (S41). Therefore,

Dext

2(D −Dext)
=

1− c

2c
= λext. (S54)

In the next several sections, we use the above simplification to derive λext for several explicit
examples. See Table I for a summary.
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Dirichlet Distribution Normalized i.i.d. Distribution Random Delta Distribution Nearest Neighbor Distribution

c
α

α+ 1
c

2k + 1

4k
2(1− 2E[ω2])

D
1

2α

k∑
i=−k

αii
2 1

6
k(k + 1)

1

6
k(k + 1)

1

2

Dext
1

2α(α+ 1)

k∑
i=−k

αii
2 1

6
k(k + 1)(1− c)

1

24
(k + 1)(2k − 1) 2E[ω2]− 1

2

λext
1

2α

1− c

2c

2k − 1

2(2k + 1)

4E[ω2]− 1

2(1− 2E[ω2])

TABLE I. A summary of the relevant coefficients for the examples in Sections VIB, VIC, VID, and VIE.

B. Dirichlet distribution

We recall our definition of the Dirichlet distribution from Section I. The Dirichlet distribution for
ν is specified by a choice of k ∈ Z≥1 and α⃗ = (α−k, . . . , αk) ∈ R2k+1

>0 . It assigns probability density

proportional to
∏k

j=−k ξ(j)
αj to each vector ξ = (ξ(−k), . . . , ξ(k)) ∈ Rk

≥0 satisfying
∑k

j=−k ξ(j) = 1.

Then, we set ξ(i) = 0 for i /∈ [−k, k] so that ξ is defined on Z.
We have

Eν [ξ (i)] =

{
αi

α for − k ≤ i ≤ k

0 else,

and for i, j ∈ Z, i ̸= j:

Eν [ξ(i)ξ(j)] =
αiαj

α(α+ 1)
=

α

α+ 1
Eν [ξ (i)]Eν [ξ (j)] .

It follows that (S39) and (S40) hold for the Dirichlet distribution with c = α
α+1 so that the Dirichlet

distribution falls into the general class of models considered above. Combining (10) and (S41), we
see that

Dext =
1

2α(α+ 1)

k∑
i=−k

αii
2.

We calculate the diffusion coefficient from its definition in (4),

D =
1

2α

k∑
i=−k

αii
2.
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Finally, we see from (S53) that

λext =
1

2α
. (S55)

C. Independent and Identically Distributed Random Variables

We recall our definition of the normalized i.i.d. distribution from Section I. The normalized i.i.d.
distribution for ν is specified by a choice of k ∈ Z≥1 and a choice of probability distribution on
R≥0. Let X−k, . . . , Xk be chosen independently according to the specified probability distribution,

and then define ξ(i) = Xi(
∑k

j=−k Xj)
−1 for i ∈ [−k, k] and ξ(i) = 0 otherwise.

We have

Eν [ξ (i)] =

{
1

2k+1 for − k ≤ i ≤ k

0 else,

and for i, j ∈ Z, i ̸= j:

Eν [ξ(i)ξ(j)] =
c

(2k + 1)2

for some constant c ∈ (0, 1). Therefore, (S39) and (S40) are satisfied. Combining (10) and (S41),
we see that

Dext =
1− c

2(2k + 1)

k∑
i=−k

i2 =
1

6
k(k + 1)(1− c)

We calculate the diffusion coefficient from its definition in (4),

D =
1

2(2k + 1)

k∑
i=−k

i2 =
1

6
k(k + 1).

Finally, we see from (S53) that

λext =
1− c

2c
. (S56)

D. Random Delta Distribution

We recall our definition of the random delta distribution from Section I. The random delta
distribution for ν is specified by k ∈ Z≥1. Two numbers X1, X2 are drawn uniformly without
replacement from {−k, . . . , k}. We set ξ(X1) = ξ(X2) = 1/2 and ξ(i) = 0 for all i ̸= X1, X2.
We have

Eν [ξ (i)] =

{
1

2k+1 for − k ≤ i ≤ k

0 else,
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and for i, j ∈ Z, i ̸= j:

Eν [ξ(i)ξ(j)] =
1

4k(2k + 1)
.

It follows that (S39) and (S40) are satisfied with c = 2k+1
4k . Combining (10) and (S41), we see that

Dext =
2k − 1

8k(2k + 1)

k∑
i=−k

i2 =
1

24
(k + 1)(2k − 1).

We calculate the diffusion coefficient from its definition in (4),

D =
1

6
k(k + 1).

Finally, we see from (S53) that

λext =
2k − 1

2(2k + 1)
. (S57)

E. Nearest Neighbor Distribution

We define the nearest neighbor distribution as follows. Let ω be any random variable taking
values in the interval [0, 1] such that E[ω] = 1

2 . We set ξ(1) = ω, ξ(−1) = 1 − ω and all other
ξ(i) = 0.
We have

Eν [ξ (1)] = Eν [ξ (−1)] =
1

2

and

Eν [ξ(1)ξ(−1)] =
1

2
− E[ω2].

It follows that (S39) is satisfied with c = 2(1 − 2E[ω2]); however, the walk V (t) is no longer
irreducible. In fact, when started from 0, it remains restricted to the sublattice 2Z. Therefore,
µ(·) = 0 for all l /∈ 2Z, µ(0) = 1 and µ(l) = c for l ∈ 2Z. This slightly changes the analysis
performed above since up until now, we were assuming that µ(l) = c for all l ̸= 0. In particular,
(S52) is replaced by

∞∑
l=0

E [∆ (t+ 1)−∆(t) | ∆(t) = l] µ̃ (l) = c
∑

l∈2Z≥0

∑
|i−j|>l

(2− 1l=0)(|i− j| − l)Eν [ξ (i)]Eν [ξ (j)] .

(S58)

In other words, we are only summing over even integers l. This can be further simplified in the
same manner as above such that

∞∑
l=0

E [∆ (t+ 1)−∆(t) | ∆(t) = l] µ̃ (l) = c
∑
i∈Z

i2Eν [ξ (i)] = c.
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Note that this is simply half of what we obtained when summing over all integers instead of just
even ones. We can also see this more directly by noticing that E [∆ (t+ 1)−∆(t) | ∆(t) = l] = 0
for l ≥ 2. Therefore,

∞∑
l=0

µ(l)Eν [∆ (t+ 1)−∆(t) | ∆(t) = l] = Eν [∆ (t+ 1)−∆(t) | ∆(t) = 0] = 2(1− 2E[ω2]) = c.

We compute Varν
(
Eξ[Y ]

)
= 4E[ω2]− 1 = 1− c so that

λext =
Varν

(
Eξ[Y ]

)∑∞
l=0 E [∆ (t+ 1)−∆(t) | ∆(t) = l] µ̃ (l)

=
4E[ω2]− 1

2(1− 2E[ω2])
=

1− c

c
. (S59)

This matches with the results in [10]. Since D = 1/2, we have that

λext =
Varν

(
Eξ[Y ]

)
(2D −Varν (Eξ[Y ]))

, (S60)

which is twice that of the irreducible cases. Similar extensions are possible if V (t) is restricted to
other sublattices, but we do not write out the details here.

VII. UNITS OF VARIABLES

We now introduce a lattice spacing dx and time step dt to understand the units of each variable.
We do this by rescaling space and time such that x ∈ dxZ and t ∈ dtZ. Note, that the environment
is now defined on the new lattice meaning ξt,x is a probability distribution on dxZ. With the
rescaled space and time,

D =
1

2dt

∑
i∈dxZ

Eν [ξ (i)] i
2 (S61)

=
1

2dt

∑
i∈Z

Eν [ξ (idx)] (idx)
2 (S62)

=
dx2

2dt

∑
i∈Z

Eν [ξ (idx)] i
2 (S63)

which shows D has units area per time. The extreme diffusion coefficient, Dext, has units of area
per time as well since

Dext =
1

2dt
Eν

( ∑
i∈dxZ

ξx,t(i)i

)2
 (S64)

=
dx2

2dt
Eν

(∑
i∈Z

ξx,t(idx)i

)2
 . (S65)
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We show that λext should be a length scale via its definition in (S4). Notice the numerator of (S4)
has units of area per time. The denominator has units of length per time since µ̃ (l) is unitless and
E [∆ (t+ dt)−∆(t) | ∆(t) = l] is the change in the distance between two random walks in a single
timestep. Therefore, λext has units length. By tracking the units in our simplification of λext in
Section VI, we find the simplified form of λext in (9) becomes

λext =
1

2

Dext

(D −Dext)
dx =

1

2

Varν
(
Eξ[Y ]

)
Eν

[
Varξ(Y )

]dx. (S66)
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