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We consider many-particle diffusion in one spatial dimension modeled as “random walks in a random
environment.” A shared short-range space-time random environment determines the jump distributions that
drive the motion of the particles. We determine universal power laws for the environment’s contribution to
the variance of the extreme first passage time and extreme location. We show that the prefactors rely upon a
single extreme diffusion coefficient that is equal to the ensemble variance of the local drift imposed on
particles by the random environment. This coefficient should be contrasted with the Einstein diffusion
coefficient, which determines the prefactor in the power law describing the variance of a single diffusing
particle and is equal to the jump variance in the ensemble averaged random environment. Thus a
measurement of the behavior of extremes in many-particle diffusion yields an otherwise difficult to
measure statistical property of the fluctuations of the generally hidden environment in which that diffusion
occurs. We verify our theory and the universal behavior numerically over many random walk in a random
environment models and system sizes.
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Introduction—Beneath the still surface of a glass of
water lies an invisible roiling chaos; thermal motion moves
the fluid environment at every time and length scale [1–10].
It is only through the motion of tracer particles that this
molecular storm is rendered visible [1,2,11]. The coeffi-
cient of the mean-squared displacement power law for a
single tracer particle yields a measurement of the Einstein
diffusion coefficient, D. Classical diffusion theory [3–10]
relates this to a microscopic statistic of the environment,
namely the square of the mean-free path length divided
by the mean collision time. This is far from a complete
characterization of the thermal motion within the environ-
ment. The introduction of multiple tracer particles offers
the possibility of gleaning further statistical information.
However, classical diffusion theory stymies such an effort
since it treats each particle as independent, thus replacing
the richness and chaos of the environment with an
ensemble average in which particles are randomly kicked
in the same manner and at the same rate everywhere in the
system. This erasure is a lie, but one which works well to
predict the bulk or typical behavior of many tracer particles.
In this Letter, we show that at the edges of the bulk, the
truth is exposed: the fluctuations of the extremes of many
tracer particles are highly sensitive to the disorder of the
environment and thus reveal a more complete statistical
description of the hidden environment.
Here, we study the statistical behavior of the extreme

first passage time past a barrier at location L and of the
extreme location at time t for a system of N tracer particles
in a general class of “random walk in random environment
(RWRE) models; see Fig. 1(a). These models capture the

fact that in real many-particle diffusion, all particles are
subject to common and effectively random forces from the
thermal fluctuations of the fluid environment. We show
theoretically and confirm numerically that (1) the environ-
ment’s contribution to the variances of these two observ-
ables is independent of the variance due to sampling and
follows robust power laws [see (7) and (8) below] whose
exponents are independent of the choice of environment,
and (2) the coefficient in these power laws, as well as the
time or location of onset of the power laws, depends on the
Einstein diffusion coefficient, D, as well another parameter
Dext, defined in (10), that is equal to the ensemble variance
of the local drift imposed upon particles by the environment
[see Fig. 1(b), where Dext records the variance of the black
arrows, and see Fig. 2 for numerical results verifying this
theory]. We call Dext the “extreme diffusion coefficient” as
it relates the extreme behavior of many-particle diffusion to
a microscopic statistic of the environment. In the RWRE
model, the Einstein diffusion coefficient D is related to a
different microscopic statistic, namely the jump variance
in the ensemble averaged environment. Thus, these two
diffusion coefficients—that of Einstein, which is observ-
able from a single tracer, and that introduced here, which is
observable from the extremes of many tracers—offer a
refined lens relative to classical diffusion theory through
which to measure the statistics of the hidden environment.
RWRE models—In place of the independent random

walk model of classical diffusion theory, we consider here
lattice RWRE models. These play the role of a coarse-
grained continuum environment in which particles are
chaotically or thermally randomly biased in their motion
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by an environment quickly mixing in space and time. As
such, we focus on RWRE models whose randomness is
short-range correlated in time; see also [12–19]. This is in
contrast to long-range correlated or quenched in time
randomness, e.g., as in [20–30].
To define our RWRE models, we first describe how we

specify the environment, and then we describe how random
walks evolve therein. Each RWRE model is specified by ν,
a choice of probability distribution on the space of proba-
bility distributions on Z. There are many ways to produce a
random probability distribution on Z. Perhaps the simplest
involves choosing a uniform random variable on [0, 1] and
then assigning that probability to þ1 and its complemen-
tary probability to −1 (and 0 probability assigned to all
other values ofZ). This nearest-neighbormodel is a special
case of the beta RWRE (where the uniform is replaced by a
general beta distribution) introduced and studied recently
in [31–36]. Though our theoretical results apply more
generally, for our numerical simulations we will consider a
few other specific non-nearest neighbor examples of ν,
namely the “Dirichlet” and “random delta” distributions
described below; see also [37,39] for other examples. Let ξ
denote a probability distribution onZ sampled according to

ν, so that ξðiÞ is the probability mass on i∈Z. For k ≥ 1
and positive ðα−k;…αkÞ the Dirichlet distribution is such
that ξðiÞ ¼ Xi=Z for i∈ ½−k; k� [and ξðiÞ≡ 0 elsewhere]
where the Xi are independent Gamma random variables
with shape αi and rate β ¼ 1 and Z ¼ P

j∈ ½−k;k� Xi. The
“flat Dirichlet” distribution is when αi ≡ 1 and is uniformly
distributed over all probability distributions supported on
½−k; k�. The random delta distribution is solely character-
ized by the width of the interval k. We first generate two
random variables, X1 and X2, uniformly and without
replacement on the integer interval ½−k; k�, and then set
ξðX1Þ ¼ ξðX2Þ ¼ 1=2 and ξðiÞ≡ 0 otherwise.
Given ν, we define the random environment as

ξ ≔ ðξt;x∶ x∈Z; t∈Z≥0Þ, where each ξt;x is a probability
distribution on Z that is sampled independently according
to ν. The environment, ξ, should be thought of as one
instance of an environment in which several particles can
diffuse from position x and time t using the transition
probabilities ξt;x, e.g., the red arrows in Fig. 1(b).
We denote the product measure on the environment ξ

by Pν and let Eν½•� and Varνð•Þ denote the associated
expectation and variance. We restrict our attention to
models ν that produce net drift-free systems, i.e., such thatP

j∈Z Eν½ξðjÞ�j ¼ 0 where ξ is sampled according to ν,
and those with finite range, i.e., such that there exists an
M > 0 so that ξðjÞ ¼ 0 if jjj > M. After going to a suitable
moving frame, similar results to ours hold even when
there is a net drift, i.e., nonzero expected mean. However,
long-range, heavy-tailed jump distributions may lead to
new phenomena related to anomalous diffusion (see, e.g.,
[30,40]), deserving further study.
Given a sample ξ of the environment, we define a

probability measure Pξ on an arbitrary number of inde-
pendent and identically distributed (i.i.d.) random walks
R1; R2;… evolving in that environment, and let Eξ½•� and
Varξð•Þ denote the associated expectation and variance.
Each walk starts at Rið0Þ ¼ 0, where RiðtÞ∈Z denotes its
position at time t. The probability that a walk at x at time t
transitions to xþ j at time tþ 1 is

PξðRiðtþ 1Þ ¼ xþ jjRiðtÞ ¼ xÞ ¼ ξt;xðjÞ:

All random walks evolve independently given ξ, though
notably walkers at the same location x at the same time t are
subject to the same jump distribution, ξt;x. We define the
transition probabilities given ξ by pξðx; tÞ ¼ Pξ(RðtÞ ¼ x)
[we drop the superscript i here and elsewhere below since
each RiðtÞ is i.i.d.]; this satisfies pξðx; 0Þ ¼ 1x¼0, and

pξðx; tþ 1Þ ¼
X
j∈Z

pξðx − j; tÞξt;x−jðjÞ: ð1Þ

The measure Pν is on the environment ξ and Pξ is on
independent random walks given the environment ξ. It is

(a)

(b)

FIG. 1. (a) Space-time trajectories of N ¼ 105 particles evolv-
ing in a random environment generated by the flat Dirichlet
distribution on the interval f−2;…; 2g. The solid red line denotes
the extreme location MaxNt , and the green circle denotes the
extreme first passage time MinNL . (b) The random environment
driving the evolution in (a): blue boxes are sites, the width of the
red arrows shows the probability of jumping between sites, and
black arrows are average drifts from sites.

PHYSICAL REVIEW LETTERS 133, 267102 (2024)

267102-2



also useful to define P by Pð•Þ ¼ Eν½Pξð•Þ� for any event •
defined in terms of the random walks R1; R2;…, and to let
E½•� and Var½•� denote the associated expectation and
variance. This is the marginal distribution on many-particle
diffusion trajectories that is relevant to repeated experi-
mental studies of many-particle diffusion; P represents the
histogram over many experimental samples of the many-
particle diffusion trajectories.
Given a random walk Ri, we denote its first passage time

past L > 0 by τiL. The “extreme first passage time” of N
random walkers past location L is defined as

MinNL ≔ min
��

τ1L;…; τNL
��

:

Given an environment ξ, the walks R1;…; RN are i.i.d.
under the measure Pξ, and thus so are the τiL. Therefore,

Pξ
�
MinNL ≤ t

� ¼ 1 −
�
1 − PξðτL ≤ tÞ�N: ð2Þ

We also study the extreme location of N walks at time t,

MaxNt ≔ max
��

R1ðtÞ;…RNðtÞ��:
Given ξ, under the measure Pξ on R1;…; RN ,

Pξ
�
MaxNt ≥ x

� ¼ 1 −
�
1 − PξðRðtÞ ≥ xÞ�N: ð3Þ

We characterize the statistics of MinNL and MaxNt under
the measure P, i.e., when the environment is hidden as in
real diffusive systems. There are two levels of randomness:
first, the randomness due to the environment, EnvNt , and
second, the randomness of sampling walkers in that
environment, SamN

L . Specifically, we define EnvNL as the
minimum time t such that PξðτL ≤ tÞ ≥ ð1=NÞ and
SamN

L as the residual, SamN
L ≔ MinNL − EnvNL . Note that

EnvNL only depends on the environment ξ and by (2),
EnvNL satisfies PξðMinNL ≤ EnvNL Þ ≈ 1 − e−1. Thus, EnvNL is
approximately the mean, or median, of MinNL in a given
environment and SamN

L captures fluctuations about EnvNL
due to sampling N random walks in that environment. If
one were to sample many systems of N independent
random walks in the same environment, one could com-
pute the mean value of MinNL (i.e., the mean extreme first
passage time) and find that it is well approximated by EnvNL.
The fluctuations of the many different measured values
of MinNL , in the same environment, will in turn be captured
by SamN

L. We similarly define EnvNt as the maximum
position x satisfying Pξ(RðtÞ ≥ x) ≥ ð1=NÞ and SamN

t ≔
MaxNt − EnvNt . Note the subscript of EnvNL , Env

N
t , SamN

L ,
and SamN

t distinguishes between measurements of the first
passage at a distance L (subscript L) and location of
extreme particle at time t (subscript t).

Theoretical results—The Einstein diffusion coefficient,

D ≔
1

2

X
j∈Z

Eν½ξðjÞ�j2; ð4Þ

for the RWRE is defined as the variance of the ensemble
averaged jump distribution (recall that we have assumed
a net drift-free system, i.e.,

P
j∈Z Eν½ξðjÞ�j ¼ 0). The

following results are derived under the assumption that
L ≫ λext lnðNÞ3=2 or t ≫ ðλ2ext=DÞ lnðNÞ2 [where λext is
defined in (10)], and N ≫ 1. We find that

E
�
MinNL

�
≈

L2

4D lnðNÞ ; E
�
MaxNt

�
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D lnðNÞt

p

matching the classical theory of diffusion, i.e., where the
RWRE is replaced by independent random walks with
Einstein diffusion coefficient D; see, e.g., [41–47].
The variance of MinNL andMaxNt reveals more interesting

behavior. The environmental and sampling contributions to
MinNL and MaxNt are roughly independent,

VarðMinNL Þ ≈ VarðEnvNL Þ þ VarðSamN
L Þ; ð5Þ

VarðMaxNt Þ ≈ VarðEnvNt Þ þ VarðSamN
t Þ: ð6Þ

The sampling fluctuations are centered Gumbel with

VarðSamN
L Þ ≈

π2L4

96D2 lnðNÞ4 ; VarðSamN
t Þ ≈

π2Dt
6 lnðNÞ ;

in agreement with classical diffusion theory [41–47]. The
environmental fluctuations follow anomalous power laws

VarðEnvNL Þ ≈ λext

ffiffiffiffiffiffi
2π

p
L3

8D2 lnðNÞ5=2 ð7Þ

VarðEnvNt Þ ≈ λext
ffiffiffiffiffiffiffiffiffiffiffi
2πDt

p
: ð8Þ

where D is the Einstein diffusion coefficient,

λext ≔
1

2

Dext

ðD −DextÞ
¼ 1

2

VarνðEξ½Y�Þ
Eν½VarξðYÞ�

; ð9Þ

and Dext is the extreme diffusion coefficient,

Dext ≔
1

2
VarνðEξ½Y�Þ ¼ 1

2
Eν

	
X
j∈Z

ξðjÞj
�

2
�
: ð10Þ

See the Appendix’ for a brief discussion of our theoretical
methods and [37] for a derivation of our results.
Here and below, Y is a random jump distributed

according to ξ. Thus Dext is the variance over the random
environment of the drift of a single jump, i.e., how much
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the black arrows fluctuate over space and time in Fig. 1(b).
Then λext is the ratio of that to the mean over the random
environment of the variance of a single jump. The formula
in (9) is derived in [37] under the assumptions

Eν½ξðiÞξðjÞ� ¼ cEν½ξðiÞ�Eν½ξðjÞ� for all i ≠ j; ð11Þ

with some fixed c∈ ð0; 1Þ, and the RWRE is aperiodic (i.e.,
it does not live on a strict space-time sublattice). In terms
of c, λext ¼ ðð1 − cÞ=2cÞ. When (11) fails, there is a more
involved formula for λext; see Refs. [37,39,48]. When
aperiodicity fails, e.g. for the nearest-neighbor RWRE,
an additional factor arises in (9); see Ref. [37].
The extreme diffusion coefficient necessarily satisfies

Dext ∈ ½0; D�. When Dext ¼ D (hence λext ¼ ∞), ξ is
supported at a single, yet random site, hence a perfectly
sticky environment of coalescing random walkers. There is
a scaling limit where Dext → D as time is rescaled, which
leads to sticky Brownian motions as studied, for instance,

in [33,39,49,50]. When Dext ¼ 0, (hence λext ¼ 0), the
drift Eξ½Y� becomes deterministic, thus with probability 1
under Pν,

P
j ξðjÞj is constant, and (by the net drift-free

assumption) equal to 0; see Refs. [39,51].
The quantities D and Dext have units of area per time,

while λext has units of length. This is shown by rescaling the
lattice so as to endow it with length and time units (see
Ref. [37]) or by studying certain continuum versions of our
model such as sticky Brownian motions [33,39,49,50] or
Langevin dynamics in a random environment [32,52].
Numerical results—Figures 2(a) and 2(e) show that our

theoretical prediction for each relevant variance is asymp-
totically accurate and that the addition laws in (5) and (6)
are justified. Figures 2(b) and 2(f) show the collapse of the
scaled environmental variance for several choices of ν.
Although our predictions assume N is large, they are accu-
rate for systems as small as N ¼ 100. This is also shown
in Figs. 2(d) and 2(h) since the ratio of the measured
environmental variance to the theoretical prediction goes

(a) (e)

(b)

(c) (g)

(h)(d)

(f)

FIG. 2. Plot of the measured variances for the extreme first passage time (a) and extreme location (e) for systems of N ¼ 1028 and the
flat Dirichlet distribution with D ¼ 1. (b),(f) Collapse of the environmental variance as a function of L and t, respectively,
N ¼ 102; 1014, and 1028 is plotted in red, blue, and green, respectively; the Dirichlet, flat Dirichlet, and random delta distributions for ν
are rendered as dotted, dashed, and solid lines, respectively; the color saturation is proportional to the Einstein diffusion coefficient D.
Insets (c),(g): plot of the measured Dext against the true value of Dext. The dashed line represents equality. The Dirichlet, flat Dirichlet,
and random delta distributions are labeled with a star, circle, and triangle, respectively. (d),(h) Plot of ratios of measured environmental
variance vs theoretical prediction in (7) and (8) as a function of L and t, respectively. All reported quantities are measured by simulating
500 different systems for a given ν and N.
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to 1, asymptotically. Figures 2(c) and 2(g) show that our
numerically computed values of Dext from both kinds of
measurements match the theoretical value, falling onto
the line of equality. Since VarðSamN

L Þ, and similarly
VarðSamN

t Þ, rely only on D, a measurement of MinNL , or
MaxNt can be translated to a measurement of Dext. See the
Appendix for our numerical methods.
Conclusion—While we have focused herein on lattice

models, the theory of extreme diffusion should extend
to systems with continuous space and time dimensions
provided sufficiently fast mixing of the random environ-
ment in both dimensions. Besides demonstrating a univer-
sality result, the key contribution of this Letter is the link
shown between the extreme diffusion coefficient and the
statistics of the environment. Previous works on extreme
diffusion have considered nearest-neighbor RWREs
[31–36], which are too simple to reveal this relationship,
or the continuum sticky Brownian motions where there is
no clear notion of an environment [33,39,49,50]). In light
of the universality we demonstrate here, we expect this
model to be applicable to all physical systems in which
particles (or more generally, agents) move in response to
the forcing present within a shared space-time chaotic
environment. There are several outstanding theoretical
challenges, including (1) establishing the role of correlation
length and timescales in defining the continuum extreme
diffusion coefficient, (2) extending extreme diffusion
theory to higher spatial dimensions, (3) understanding
whether there exists a fluctuation-dissipation type relation
for the extreme diffusion coefficient, and if so, what the
relevant notion of extreme drag is, and (4) testing extreme
diffusion in experimental systems.
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quenched noise amplitudes, J. Phys. A 31, 2603 (1998).

[31] Guillaume Barraquand and Ivan Corwin, Random-walk in
beta-distributed random environment, Probab. Theory Re-
lated Fields 167, 1057 (2017).

[32] Pierre Le Doussal and Thimothée Thiery, Diffusion in time-
dependent random media and the Kardar-Parisi-Zhang
equation, Phys. Rev. E 96, 010102(R) (2017).

[33] Guillaume Barraquand and Pierre Le Doussal, Moderate
deviations for diffusion in time dependent random media,
J. Phys. A 53, 215002 (2020).

[34] Jacob B. Hass, Aileen N. Carroll-Godfrey, Ivan Corwin, and
Eric I. Corwin, Anomalous fluctuations of extremes in
many-particle diffusion, Phys. Rev. E 107, L022101 (2023).

[35] Jacob B. Hass, Ivan Corwin, and Eric I. Corwin, First-
passage time for many-particle diffusion in space-time
random environments, Phys. Rev. E 109, 054101 (2024).

[36] Sayan Das, Hindy Drillick, and Shalin Parekh, KPZ equation
limit of sticky Brownian motion, arXiv:2304.14279.

[37] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.133.267102 for exam-
ples of ν, a derivation of the extreme first passage time and
location, and a derivation of λext, which includes Ref. [38].

[38] J. R. Norris,Markov Chains, Cambridge Series in Statistical
and Probabilistic Mathematics (Cambridge University
Press, Cambridge, England, 1997), ISBN 978-0-521-
63396-3, 10.1017/CBO9780511810633.

[39] Shalin Parekh, Invariance principle for the KPZ equation
arising in stochastic flows of kernels, arXiv:2401.06073.

[40] Ralf Metzler and Joseph Klafter, The random walk’s guide
to anomalous diffusion: A fractional dynamics approach,
Phys. Rep. 339, 1 (2000).

[41] Z. Schuss, K. Basnayake, and D. Holcman, Redundancy
principle and the role of extreme statistics in molecular and
cellular biology, Phys. Life Rev. 28, 52 (2019).

[42] Samantha Linn and Sean D. Lawley, Extreme hitting
probabilities for diffusion, J. Phys. A 55, 345002 (2022).

[43] Sean D. Lawley, Distribution of extreme first passage times
of diffusion, J. Math. Biol. 80, 2301 (2020).

[44] Sean D. Lawley, Universal formula for extreme first
passage statistics of diffusion, Phys. Rev. E 101, 012413
(2020).

[45] Jacob B. Madrid and Sean D. Lawley, Competition between
slow and fast regimes for extreme first passage times of
diffusion, J. Phys. A 53, 335002 (2020).

[46] K. Basnayake, Z. Schuss, and D. Holcman, Asymptotic
formulas for extreme statistics of escape times in 1, 2 and
3-dimensions, J. Nonlinear Sci. 29, 461 (2019).

[47] George H. Weiss, Kurt E. Shuler, and Katja Lindenberg,
Order statistics for first passage times in diffusion processes,
J. Stat. Phys. 31, 255 (1983).

[48] Jacob Hass, Hindy Drillick, Ivan Corwin, and Eric Corwin,
Universal KPZ fluctuations for moderate deviations of
random walks in random environments (to be published).

[49] Guillaume Barraquand and Mark Rychnovsky, Large devi-
ations for sticky Brownian motions, Electron. J. Pro 25, 1
(2020).

[50] Sayan Das, Hindy Drillick, and Shalin Parekh, KPZ
equation limit of random walks in random environments,
arXiv:2311.09151.

[51] Jacob Hass, Super-universal behavior for extreme diffusion
in random environments (to be published).

[52] Dom Brockington and Jon Warren, At the edge of a cloud of
Brownian particles, arXiv:2208.11952.

[53] Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang,
Dynamic scaling of growing interfaces, Phys. Rev. Lett.
56, 889 (1986).

[54] Ivan Corwin, The Kardar–Parisi–Zhang equation and uni-
versality class, RandomMatrices Theory Appl. 01, 1130001
(2012).

[55] Mehran Kardar, Replica Bethe ansatz studies of two-
dimensional interfaces with quenched random impurities,
Nucl. Phys. B290, 582 (1987).

[56] Lorenzo Bertini and Nicoletta Cancrini, The stochastic heat
equation: Feynman-Kac formula and intermittence, J. Stat.
Phys. 78, 1377 (1995).

[57] Gideon Amir, Ivan Corwin, and Jeremy Quastel, Probability
distribution of the free energy of the continuum directed
random polymer in 1þ 1 dimensions, Commun. Pure Appl.
Math. 64, 466 (2011).

[58] P. Calabrese, P. Le Doussal, and A. Rosso, Free-energy
distribution of the directed polymer at high temperature,
Europhys. Lett. 90, 20002 (2010).

End Matter

Appendix—
Theoretical methods: Our derivation [37] of the

extreme first passage and location statistics closely follows
[34,35] and relies on moderate deviation asymptotics for

the tail probability Pξ(RðtÞ ≥ x) with x ∝ t3=4, where ξ is
distributed according to Pν. We rely on results from [39,48]
that prove convergence in this regime of the tail probabi-
lity to the Kardar-Parisi-Zhang (KPZ) equation [53,54].
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The occurrence of the KPZ equation under moderate
deviation scaling was predicted (without a formula for
the KPZ coefficients) first in [32] and confirmed with
coefficients for the beta RWRE in [33] and general nearest-
neighbor RWRE in [36], all prior to the general case
addressed in [39,48].
To see this convergence, first observe that the master

equation (1) implies the tail probability Pξ½RðtÞ ≥ x� is the
partition function for a directed polymer model. The
polymer replica method, developed first in the continuum
setting (and related to the KPZ equation) [55,56], expresses
the kth moment of the tail probability as the expected value
over k independent random walks of a certain interaction
energy. In the continuum limit, this interaction energy
becomes equal to the coefficient λext times the sum of the
pair local times (i.e., coming from a Dirac delta interaction
potential) of k Brownian motions, and thus recovering the
kth moment of the continuum directed polymer, i.e., the
multiplicative stochastic heat equation. The coefficient λext
can already be determined from the k ¼ 2 case and involves
the two-point motion, i.e., the law of R1 and R2 under P, via
the expected change in its difference jR1ðtÞ − R2ðtÞj in a
unit of time when initialized under its invariant measure.
This is derived in [48] (see also [39]) using a discrete
Tanaka formula to relate the discrete and continuum
interaction potential. Under (11), the invariant measure
for the two-point motion becomes constant away from the
origin and λext simplifies to yield (9).
As in [34,35], the tail probability Pξ(RðtÞ ≥ x) can be

inverted to approximately recover EnvNL and EnvNt . By the
KPZ convergence, this readily implies that

VarðEnvNL Þ ≈
L4

ð4DÞ2 lnðNÞ4Var(h


32λ2ext lnðNÞ3

L2
; 0

�
);

VarðEnvNt Þ ≈
Dt

lnðNÞVar(h



8λ2ext lnðNÞ2

Dt
; 0

�
);

where hðt; xÞ is the narrow-wedge solution to the KPZ
equation. The power laws and their regime of applicability
come from the short-time Edwards-Wilkinson asymptotics
of the KPZ equation; see e.g., [57,58].
Numerical methods: We describe how we numerically

measure the mean and variance of EnvNL , Sam
N
L , and MinNL .

We begin by numerically computing the probability
mass function of the first passage time for a single particle
[we drop the superscript and just call it RðtÞ], defined as
τL ¼ min (t∶RðtÞ ≥ L). To do so, we consider RLðtÞ ¼
R(minðt; τLÞ), the random walk stopped (or absorbed)
when RðtÞ ≥ L. We denote the probability mass function of
RLðtÞ as pξ

Lðx; tÞ ¼ PξðRLðtÞ ¼ xÞ. Given an environment
ξ, pξ

Lðx; tÞ uniquely solves

pξ
Lðx; tþ 1Þ ¼

X
i<L

pξ
Lði; tÞξt;iðx − iÞ ðA1Þ

for x∈ ð−∞; LÞ ∩ Z and t ≥ 0, subject to the absorbing
boundary condition

pξ
LðL; tþ 1Þ ¼ pξ

LðL; tÞ þ
X
i<L

pξ
Lði; tÞ

X
j≥L

ξt;iðj − iÞ ðA2Þ

and initial condition pξ
Lðx; tÞ ¼ 1x¼0. The probability of τL

occurring before time t is given by the probability of RLðtÞ
being absorbed before time t, which is to say,

PξðτL ≤ tÞ ¼ pξ
LðL; tÞ: ðA3Þ

For a given environment distribution ν, we numerically
sample ν to generate an environment, ξ, and then we use
this environment to compute PξðτL ≤ tÞ via (A1) and (A2).
We measure EnvNL in this environment by finding the
minimum time t such that PξðτL ≤ tÞ ≥ 1=N. We then
numerically compute the distributions of MinNL and SamN

L
in the given environment. For MinNL we use (2) and for
SamN

L we combine (2) and our definition SamN
L ≔ MinNL −

EnvNL and thus compute the distribution of SamN
L as

PξðSamN
L ≤ tÞ ¼ 1 −

�
1 − Pξ

�
τL ≤ tþ EnvNL

��
N: ðA4Þ

Since N is quite large, we use arbitrary precision
floating point arithmetic to compute the Nth power in (2)
and (A4). Now, given these computed distribution func-
tions we compute Eξ½MinNL � and VarξðMinNL Þ, Eξ½SamN

L �
and VarξðSamN

L Þ. Finally, we repeat this procedure for
many different samples of ξ. We compute E½EnvNL � and
VarðEnvNL Þ by taking the mean and variance of EnvNL over
these samples. For MinNL and SamN

L we utilize the law of
total expectation, i.e., E½MinNL � ¼ Eν½Eξ½MinNL �� (likewise
for SamN

L ) and the total law of variance VarðMinNL Þ ¼
VarνðEξ½MinNL �Þ þ Eν½VarξðMinNL Þ�.
We use a nearly identical procedure to numerically

compute the mean and variance of the corresponding
extreme location quantities EnvNt , SamN

t , and MaxNt .
Given an environment ξ we start by numerically computing
pξðx; tÞ using the recurrence relation given in (1). We then
calculate EnvNt by finding the maximum position x such
that Pξ(RðtÞ ≥ x) ≥ 1=N. We compute the distribution of
MaxNt using (3), and the distribution of SamN

t by combining
(3) and our definition SamN

t ≔ MaxNt − EnvNt to find

PξðSamN
t ≤ xÞ ¼ (1 − Pξ(RðtÞ ≤ xþ EnvNt )ÞN: ðA5Þ

From these we compute Eξ½MaxNt �, VarξðMaxNt Þ,
Eξ½SamN

t �, and VarξðSamN
t Þ. Finally, by repeating for

several samples of ξ, as above, we compute E½EnvNt � and
VarðEnvNt Þ, and then E½MaxNt �, E½SamN

t �, VarðMaxNt Þ,
and VarðSamN

t Þ.
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One could measure MinNL and MaxNt using agent based
simulations in contrast to generating their probability
distributions as we do here. By generating the probability
distributions, we are also able to measure the environmental
and sampling fluctuations.
The extreme diffusion coefficient, Dext, can be inde-

pendently measured from both the extreme first passage
and extreme location statistics. Using (9) we find Dext ¼
ð2λextD=ð1þ 2λextÞÞ [D is computed using (4) though it
could also be recovered numerically]. For the extreme first
passage time, λext is computed as ð8D2 lnðNÞ5=2= ffiffiffiffiffiffi

2π
p

L3Þ×
ðVarðMinNL Þ − VarðSamN

L ÞÞ, whereas for the extreme

location, λext is computed as ð1= ffiffiffiffiffiffiffiffiffiffiffi
2πDt

p ÞðVarðMaxNt Þ−
VarðSamN

t ÞÞ.
We simulate a Dirichlet distribution with α⃗ ¼ ð12; 1; 12Þ,

which is peaked at −1 and 1 with particles having a small
probability of staying at the same location. We also simu-
late a Dirichlet distribution with α⃗ ¼ ð2; 1; 1=4; 4; 1=2Þ to
study a distribution that is not symmetric in the average
environment. We consider the flat Dirichlet distribution on
the interval ½−k; k� for k ¼ 1, 2, 5. Recall that the flat
Dirichlet distribution is a special case of the Dirichlet
distribution with all αi ¼ 1. Lastly, we consider the random
delta distribution on the interval ½−k; k� for k ¼ 1, 2, 5.
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