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The first-passage time for a single diffusing particle has been studied extensively, but the first-passage time of
a system of many diffusing particles, as is often the case in physical systems, has received little attention until
recently. We consider two models for many-particle diffusion—one treats each particle as independent simple
random walkers while the other treats them as coupled to a common space-time random forcing field that biases
particles nearby in space and time in similar ways. The first-passage time of a single diffusing particle under both
models shows the same statistics and scaling behavior. However, for many-particle diffusions, the first-passage
time among all particles (the extreme first-passage time) is very different between the two models, effected in the
latter case by the randomness of the common forcing field. We develop an asymptotic (in the number of particles
and location where first passage is being probed) theoretical framework to separate the impact of the random
environment with that of the sampling trajectories within it. We identify a power law describing the impact
of the environment on the variance of the extreme first-passage time. Through numerical simulations, we verify
that the predictions from this asymptotic theory hold even for systems with widely varying numbers of particles,
all the way down to 100 particles. This shows that measurements of the extreme first-passage time for many-
particle diffusions provide an indirect measurement of the underlying environment in which the diffusion is
occurring.

DOI: 10.1103/PhysRevE.109.054101

I. INTRODUCTION

The extreme (or fastest) first-passage time beyond a barrier
among many particles diffusing in a common environment
determines the function of a variety of systems such as
oocyte fertilization [1–3], neuronal activation [4], and infor-
mation flow in networks [5,6]. When particles are modeled
as independent simple symmetric random walks (SSRW) or
Brownian motions [7–9], there has been extensive study of the
first-passage behavior for a single particle [10] or, recently, for
many particles [1,2,11–17].

We probe the behavior of extreme first-passage time for a
model of many-particle diffusion where particles are modeled
as random walks in a common environment of space-time
inhomogeneous biases which are, themselves, modeled by
a random field with short-range correlations in space and
time. We focus on this (time-dependent) random walk in ran-
dom environment (RWRE) model in one spatial dimension as
would be relevant to diffusion in long and thin capillaries.
Self-averaging of the environment implies that the statisti-
cal behavior of a single (or typical) particle in the RWRE
model remains unchanged compared to the SSRW model
[18–20]. However, the extreme behavior of particles in the
RWRE model has recently been shown to be quite different
to that of the SSRW, with statistics and power laws related to
the Kardar-Parisi-Zhang (KPZ) universality class and equa-
tion [21–23] (see also Refs. [24–34]). Those works focused
on the statistical behavior of the locations of the particles
that move the furthest from a common starting position as a
function of time and the number of particles, N . The location
of the furthest particle is a complementary measurement to the

extreme first-passage time which measures time as a function
of the location of a boundary.

Here we leverage the theoretical and asymptotic (in N →
∞) results on extreme particle locations in the RWRE model
[21,22] to make precise finite N predictions about extreme
first-passage time statistics as a function of the location, L, of
first passage and the number of particles, N . We show that the
effect of the randomness of the environment and of sampling
N random walks in that environment are approximately inde-
pendent. This means that by probing the extreme first-passage
time, we are able to gain access to certain measurements of
the hidden environment in which the diffusion occurs. Using
numerical simulations, we show that these predictions remain
valid down to quite small systems of N = 100.

II. BACKGROUND

Classical modeling of diffusion [7–9] has served as a basis
for the development of more complex models such as Lévy
flights in biological systems [35], anomalous diffusion where
the mean-squared distance is not linear [36,37], and active ma-
terials where particles have internal stores of energy [38,39].
The aforementioned models modify the existing framework
of classical diffusion to better model specific phenomenon,
whereas we study a model that aims to better capture the
behavior of classical diffusion in generality.

We consider a particular type of RWRE models. RWRE
models have been studied extensively and come in vari-
ous forms, including those with short-range correlated forces
[40–44], long-range correlated forces [37,45–48], and only
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FIG. 1. A system of N = 105 particles evolving according to our
RWRE model. The green dashed lines denote a barrier at −L and L.
The extreme first-passage time, MinN

L , is identified by the red circle
and is the first time when one of these N walkers crosses this barrier.
The inset illustrates the dynamics of particles in the first three time
steps (not all 105 particles are shown to avoid cluttering). The color
of each box in the inset corresponds to the bias of the location (blue
means upward bias and red means downward bias)

spatially varying random forces [45,49–52]. We consider a
short-range, spatially and temporally varying random field.

Extreme first-passage time statistics for classical models
of many-particle diffusion (e.g., N independent SSRWs) have
been studied extensively [1,2,11–17]. For RWRE models with
a temporally constant environment, Refs. [17,53,54] studied
the aspects of first-passage times for one and many-particle
diffusions. In our setting of a temporally varying environment,
Ref. [26] (see the Supplemental Material in Ref. [55]) initiated
the study of extreme first-passage time upon which we will
expand.

III. SUMMARY OF RESULTS

We summarize our main results and outline the remainder
of the paper. We study the mean and variance of, MinN

L , the
extreme first-passage time. An illustration of our model and
the extreme first-passage time can be found in Fig. 1. We
find that the effects of the environment are negligible for the
mean of MinN

L as compared to a homogenous environment,
but introduce significant additional variance. Therefore, we
focus on characterizing the variance of MinN

L .
We show that MinN

L can be decomposed into two sources
of randomness: randomness due to the random environment,
which we denote EnvN

L , and the randomness due to sampling
random walks within that environment, which we denote
SamN

L . The main result of our paper is presented in Fig. 2,
which shows a comparison of the numerical measurements
and derived predictions for the variance of MinN

L , EnvN
L , and

SamN
L .

To distinguish our numerical measurements from the
true value, we will introduce a superscript so ENum[•]
and VarNum(•) represent the numerically measured mean
and variances of •. Similarly, we use the notation EAsy[•] and
VarAsy(•) to represent our formulas derived in the asymptotic
limit that L and N tend to infinity.

As in many extreme value statistics problems, the char-
acteristic scale for the system is set by ln(N ). We find three
distinct scaling regimes, in the limit that L and N tend to

FIG. 2. For the RWRE model with N = 1012 particles, we plot
the numerically measured (solid) and asymptotic theory (dashed)
variance of the extreme first-passage time Var(MinN

L ) (red), the vari-
ance due to the environment Var(EnvN

L ) (blue), and the variance
due to sampling Var(SamN

L ) (green). For the SSRW model, we plot

Var(M̃in
N
L ), where M̃in

N
L is the extreme first-passage time for the

SSRW model (purple). Note, our asymptotic theory matches our
numerics to such precision that they become indistinguishable on this
scale.

infinity, but are dependent on the relation between L and
ln(N ).

For short distances, when L < ln(N ), the extreme particle
moves ballistically. The extreme first-passage time is approx-
imately MinN

L ≈ L, so

Var
(
EnvN

L

) ≈ 0 (1)

for L < ln(N ). The nature and location of this crossover is
derived in Sec. VI A.

The medium and large distance regimes prove more com-
plicated than the short-distance regime. We provide the
characteristic power laws here, but more precise formulas
for Var(EnvN

L ) in the medium and large distance regimes are
derived in Secs. VI B and VI C, respectively.

We define the medium distance regime to be distances for
which ln(N ) < L < ln(N )3/2. In this regime, we find that the
variance in the randomness due to the environment scales like

Var
(
EnvN

L

) ≈ c1
L8/3

( ln(N ))2 , (2)

where c1 = Var(max(χ, χ ′))/21/3 and χ and χ ′ are indepen-
dent Gaussian unitary ensemble (GUE) Tracy-Widom (TW)
random variables.

We define the large distance regime as L > ln(N )3/2. We
find

Var
(
EnvN

L

) ≈ c2
L3

( ln(N ))5/2 , (3)

where c2 = π1/2/25/2.
Although the scalings in Eqs. (2) and (3) differ, we show

in Sec. VI C that the medium and large distance regimes are
consistent. Specifically, we show our equation for Var(EnvN

L )
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FIG. 3. We plot VarNum(MinN
L ) − VarNum(SamN

L ) for
N = 102, 105, 1012, and 1028 averaged into bins with logarithmically
spaced bin edges to achieve four bins per decade of L. The
dots represent positive values of this difference whereas the ×
represents the magnitude of negative values of this difference.
The dashed line is VarAsy(EnvN

L ) in Eq. (31) for each N
corresponding to its respective color. The lower plot shows
the ratio (VarNum(MinN

L ) − Var(SamN
L ))/VarNum(EnvN

L ), confirming
the close fit.

derived in the large distance regime, but in the limit L �
(ln(N ))3/2, recovers the power law in Eq. (2). This indicates
there is a smooth crossover from the medium to large distance
regime. We produce a continuous curve for Var(EnvN

L ) by
stitching together the medium and large distance via smooth
interpolation as discussed in Sec. VI D.

We show that the randomness introduced by sampling is
independent from that due to the environment as L → ∞.
Thus,

Var
(
MinN

L

) ≈ Var
(
EnvN

L

) + Var
(
SamN

L

)
. (4)

Using this fact, we derive Var(SamN
L ) in Sec. VI E and find

Var
(
SamN

L

) ≈ π2

24

L4

( ln(N ))4 . (5)

We note that this is the same result as one finds in the absence
of any environmental randomness.

As seen in Fig. 2, our theory for Var(EnvN
L ) and Var(SamN

L )
closely match the numerical results except for when L is
very close to ln(N ), where finite-size effects dominate. We
recover Var(MinN

L ) using Eq. (4) and this approximation

closely matches the data. We see Var(M̃in
N
L ) closely matches

Var(SamN
L ) since Var(M̃in

N
L ) does not contain any random-

ness due to the environment, and is only composed of
randomness due to sampling random walks in the same en-
vironment.

We can recover the variance due to the environment by re-
arranging Eq. (4) as Var(EnvN

L ) ≈ Var(MinN
L ) − Var(SamN

L ).
Figure 3 shows the numerically measured Var(MinN

L ) −
Var(SamN

L ) along with our asymptotic theory for Var(EnvN
L )

which matches closely for all system sizes. The ratio of the
numerically measured Var(MinN

L ) − Var(SamN
L ) and our pre-

diction for Var(EnvN
L ) is approximately 1 over the full range of

L studied, which provides validation of Eq. (4). Therefore, the
extreme first-passage time can be used as a probe to measure
the statistics of the underlying diffusive environment.

IV. MODEL FOR DIFFUSION

We consider independent random walks subject to a com-
mon environment which determines the bias at each site.
We model the environment as independent and identically
distributed (i.i.d.) transition biases B = {B(x, t ) : x ∈ Z, t ∈
Z�0} drawn from a distribution supported on [0, 1]. In this
paper, we focus on theRWRE model where B(x, t ) are drawn
from the uniform distribution on [0, 1]. If instead all B(x, t ) =
1/2, our model reduces to the SSRW model for diffusion.
We write P (•) for the probability of an event •, and E[•]
and Var(•) for the expectation and variance of a random
variable • averaged over the random environment B. For a
given environment B, we use the notation PB(•), EB[•] and
VarB(•) to represent the probability of an event • (in the first
case) or random variable • (in the second and third cases)
given the environment B. Recall the laws of total probability,
expectation, and variance:

P (•) = P (PB(•)), E[•] = E[EB[•]],

Var(•) = Var
(
EB[•]

) + E[VarB(•)]. (6)

We now describe the motion of a single particle given the
environment B. We denote the position of a single particle at
time t ∈ Z�0 as X (t ) ∈ Z. It evolves as the following Markov
chain. We begin at the origin such that X (0) = 0. Subse-
quently, for all t ∈ Z�0, if the particle is at position X (t ) = x
it flips a weighted coin which has probability of heads B(x, t )
and tails 1 − B(x, t ). If heads, the particle changes position
such that X (t + 1) = X (t ) + 1 and if tails then X (t + 1) =
X (t ) − 1. We use pB(x, t ) := PB(X (t ) = x) to denote the
probability mass function for X (t ) which uniquely solves the
Kolmogorov backwards equation

pB(x, t ) = pB(x − 1, t − 1)B(x − 1, t − 1)

+ pB(x + 1, t − 1)(1 − B(x + 1, t − 1))

for x ∈ Z and t ∈ Z�0 with initial condition pB(x, 0) = 1x=0

(with the notation 1E equals 1 if the event E occurs and 0
otherwise). For L ∈ N, we define the (random) first-passage
time, τL, for X (t ) as

τL = min(t : X (t ) /∈ (−L, L)),

i.e., the time when the particle first exits (−L, L).
We consider N particles X 1(t ), . . . , X N (t ) evolving inde-

pendently in the same environment B. This means that if
multiple particles are at the same location and the same time,
they use the same biased coins to determine their next move,
though the flips of those coins are done independently of
each other. For i ∈ {1, . . . , N}, let τ i

L denote the first-passage
time for particle X i(t ). Given the environment, the laws of
τ 1

L , . . . , τN
L are independent and identically distributed. We

will study the first time any of the N particles leave (−L, L),
which we call the extreme first-passage time and denote by
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MinN
L = min(τ 1

L , ..., τN
L ). A visualization of our system and

the extreme first-passage time can be seen in Fig. 1.
The probability distribution of τL and, consequently, that of

MinN
L can be computed by studying XL(t ) := X (min(t, τL )),

the random walk X (t ) stopped (or absorbed) when it first
exits (−L, L). The corresponding probability mass function
pB

L (x, t ) := PB(XL(t ) = x) uniquely solves the Kolmogorov
backwards equation

pB
L (x, t ) = pB

L (x − 1, t − 1)B(x − 1, t − 1)

+ pB
L (x + 1, t − 1)(1 − B(x + 1, t − 1)) (7)

for x ∈ [−L + 2, L − 2] ∩ Z and t ∈ Z�0 subject absorbing
boundary conditions whereby

pB
L (L, t ) = pB

L (L, t − 1)

+ B(L − 1, t − 1)pB
L (L − 1, t − 1),

pB
L (L − 1, t ) = pB

L (L − 2, t − 1)B(L − 2, t − 1),

pB
L (−L + 1, t ) = pB

L (−L + 2, t − 1)(1 − B(−L + 2, t − 1)),

pB
L (−L, t ) = pB

L (−L, t − 1)

+ pB
L (−L+1, t − 1)(1 − B(−L+1, t −1)),

(8)

and initial condition pB
L (x, 0) = 1x=0. The probability of τL

occurring before time t is the same as the probability of being
absorbed before time t , which is given by

PB(τL � t ) = pB
L (L, t ) + pB

L (−L, t ). (9)

From this, the probability distribution of the extreme first-
passage time, MinN

L , is given by

PB(
MinN

L � t
) = 1 − (1 − PB(τL � t ))N (10)

since each τ i
L is independent and identically distributed with

probability distribution function PB(τL � t ). Note, for the
SSRW model for diffusion we will denote the extreme first-
passage time as M̃in

N
L .

There are two sources of randomness at play in MinN
L . The

first is due to the randomness of the underlying environment,
B, and the second due to sampling random walks in said
environment. We seek to study the impact of each and their
interplay. We define a natural proxy, EnvN

L , for the randomness
due to the environment by

EnvN
L := min

(
t : PB(τL � t ) � 1

N

)
. (11)

Notice that EnvN
L is deterministic given B. Equation (11) is a

reasonable choice of EnvN
L as it is approximately the median

of the distribution of MinN
L . This can be shown by substi-

tuting PB(τL � t ) = 1
N into Eq. (10) such that PB(MinN

L �
EnvN

L ) ≈ 1 − (1 − 1/N )N ≈ e−1. The reason the first approx-
imation is not an equality is because PB(τL � t ) � 1

N in
Eq. (11) and therefore PB(τL � t ) will not strictly be equal
to 1/N at time EnvN

L . We could also define EnvN
L in Eq. (11)

by replacing 1/N with c/N for c ∈ R>0, an order 1 constant.
However, this would only introduce subleading order terms
which would not change the power laws or variance of EnvN

L

and SamN
L . Thus, we do not include this constant by setting

c = 1. The difference

SamN
L := MinN

L − EnvN
L , (12)

which is still random given B, contains the randomness from
sampling τ 1

L , . . . , τN
L given the environment B.

While we have chosen to study the extreme first-passage
time of one or many particles leaving the region (−L, L), we
could just as well have studied the analogous time for leaving
the region (−∞, L). The former case (studied mostly here) is
the two-sided case while the latter is the one-sided case. The
two-sided case benefits from the fact that E[MinN

L ] < ∞ for
all N � 1 while, in the one-sided case, this mean is infinite
for small enough N . Owing to this heavy-tailed nature of the
one-sided case, it is numerically less efficient to study than in
the two-sided case. On the other hand, our theoretical frame-
work and asymptotic predictions provided below can be easily
extended to the one-sided case. We will mostly focus on the
two-sided case but also record some results for the one-sided
case. Thus, in anticipation of that, let us define the first-
passage time τ̃L = min(t : X (t ) < L) and the stopped random
walk X̃L(t ) := X (min(t, τ̃L )), whose probability mass func-
tion p̃B

L (x, t ) := PB(X̃L(t ) = x) obeys the same equation and
initial condition as the double sided case, but without the
absorbing boundary at −L. Thus, p̃B

L (x, t ) satisfies Eq. (7)
for x ∈ (−∞, L − 1) ∩ Z subject to the first two equalities in
Eq. (8).

V. NUMERICAL METHODS

In what follows, we will study the mean and variance of
MinN

L , EnvN
L , and SamN

L . We will numerically measure the
values of these quantities via the methods described here.

Given an environment B, we can exactly sample the motion
of N particles in it by following the agent-based definition
whereby each particle evolves as a random walk with biases
given by B. When N is large, it is not feasible to use the
agent-based approach. Instead, as in Ref. [23], we obtain mas-
sive increase in efficiency by noting that if there are N (x, t )
particles at site x and time t , they will split into right- and
left-moving populations according to a Binomial distribution.
Specifically, the number of particles that move from site x at
time t to site x + 1 at time t + 1 is drawn from a Binomial
distribution with N (x, t ) trials and success probability B(x, t ).
The remaining particles move to site x − 1 at time t + 1. We
achieve such large values of N by approximating the Binomial
distribution as a Gaussian distribution for sufficiently large
N as discussed in the Supplemental Material of Ref. [23].
This occupation variable based approach provides a way to
exactly sample the number of particles per site over time
which is sufficient to study the first-passage times in question
here. Furthermore, we use quadruple-precision floating point
numbers to realize higher resolutions for large N .

In this paper, we present results on systems of N = 102

to N = 1028 particles and measure the time of first passage
for distances up to L = 750 ln(N ). We measure the extreme
first passage time past multiple distances in the same simu-
lation by recording the time at which a particle first leaves
each given boundary. We numerically measure E[MinN

L ] and
Var(MinN

L ) by choosing, according to the uniform distribution
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on each B(x, t ), an environment, B, and then sampling MinN
L

as described above. Repeating this for many independently
sampled environments allows us to build up the distribution
of MinN

L and thus estimate E[MinN
L ] and Var(MinN

L ). For
different values of N , we repeat this procedure. However, for
a given value of N , we make use of the same environment to
study the statistics of MinN

L for multiple values of L. Although
this introduces some correlation in these numerically com-
puted statistics at different distances, these should become
negligible for a large sample size (i.e., the number of different
instances of B used).

To study EnvN
L , we compute pB

L (x, t ) for a given envi-
ronment, B, and distance L by numerically solving Eq. (7)
with the boundary conditions in Eq. (8) and initial condition
pB

L (x, 0) = 1x=0. From pB
L (x, t ) we calculate PB(τL � t ) us-

ing Eq. (9). We then measure EnvN
L for a given environment

using its definition in Eq. (11). By computing PB(τL � t ) for
many independent samples of the environment B, we estimate
E[EnvN

L ] and Var(EnvN
L ).

We measure SamN
L using the following process. For a given

environment B, we calculate the probability distribution of
SamN

L using Eqs. (10) and (12), i.e.,

PB(
SamN

L � t
) = 1 − (

1 − PB(
τL � t + EnvN

L

))N
. (13)

To exponentiate the probability distribution for large values of
N , we utilize arbitrary precision floating point arithmetic. Us-
ing PB(SamN

L � t ), we calculate EB[SamN
L ] and VarB(SamN

L )
numerically. We are using the notation EB[•] and VarB(•)
introduced in Sec. IV. We can then numerically measure
E[SamN

L ] and Var(SamN
L ) by sampling many independent

instances of B and using the laws of total expectation and
variance in Eqs. (6).

We probe four values of N , N = 102, 105, 1012, and
1028. To measure statistics involving MinN

L , we use
20 000, 10 000, 10 000, and 2500 systems for the respective
values of N , while to measure statistics involving EnvN

L and
SamN

L we use 2000, 2000, 2000, and 1000 systems for the
respective values of N . Notice that we used fewer systems
for EnvN

L and SamN
L than for MinN

L . This is because MinN
L

can be sampled via simulating the motion of N particles as
described above while EnvN

L and SamN
L require computing the

probability distribution by solving the master equation. The
former is computationally much less expensive than the latter,
hence our reduction in the number of systems. For measuring
statistics involving MinN

L , for the SSRW model we use 5000
systems (in other words, we repeatedly sample N SSRWs and
observe MinN

L for a total of 5000 instances).
To compute the data presented in this paper, we used 500

CPUs on a high performance computing cluster for approxi-
mately two weeks. Our code is available at Ref. [56].

VI. DERIVATION OF ASYMPTOTIC PREDICTIONS

We derive asymptotic predictions for the extreme first-
passage time for the RWRE model in the limit where both
L and N tend towards infinity with certain relationships. We
study the mean and variances of MinN

L , EnvN
L , and SamN

L and
develop asymptotic formulas that we subsequently compare
to our numerical simulations in Sec. VII.

We find that there are three different scaling regimes with
smooth transitions between them, consistent with previous
results in Ref. [23] (which probes for different N the loca-
tion of the maximum as a function of time instead of the
first-passage time as a function of barrier location). The short
distance regime is when L/ ln(N ) → L̂ < 1, in which case
we will easily see that with very high probability at least
one particle will move ballistically (hence resulting in triv-
ial behaviors for the mean and variances in question). The
medium distance regime is when L/ ln(N ) → L̂ ∈ (1,∞), a
finite number greater than 1, in which case we leverage results
from Ref. [21] to derive our asymptotic formulas related to
the GUE TW distribution [57]. The large distance regime is
when L/( ln(N ))3/2 → L̂ ∈ (0,∞), a finite nonzero number,
in which case we leverage results from Ref. [22] to derive our
asymptotic formulas related to the statistics of the solution to
the KPZ equation with narrow wedge initial data [58–62]. In
each of these regimes, we derive asymptotic approximations
for the mean and variance of SamN

L and EnvN
L and argue

they are independent when L and N tend towards infinity.
Using this independence and these asymptotics for SamN

L and
EnvN

L , we then likewise provide formulas for the asymptotic
mean and variance of the extreme first-passage time, MinN

L , as
recorded in Eqs. (43) and (44).

The study of the extreme first-passage time for the RWRE
model was initiated in Ref. [26] (in particular, see the Sup-
plemental Material in Ref. [55]), which focused on the
fluctuations of EnvN

L in the medium distance regime. Our work
in this section builds upon that analysis, offering some addi-
tional justification (based in part on KPZ scaling theory) and
refinement as well as expanding to the large distance regime.
We also develop the theory describing the sampling fluctua-
tions SamN

L . In particular, we describe how the environmental
and sampling fluctuations should be independent. Moreover,
we propose a finite N formula based on stitching together
these two asymptotic regimes. In the subsequent Sec. VII, we
verify our theory for a wide range of N through numerical
simulations.

A. Short distance regime

We assume that L, N → ∞ with L/ ln(N ) → L̂ < 1. In
this case, it is very likely that at least one of the N particles will
arrive at position ±L at time t = L, in which case we can con-
clude that EAsy[MinN

L ] ≈ L and VarAsy(MinN
L ) ≈ 0. Similarly,

we find EAsy[EnvN
L ] ≈ L and VarAsy(EnvN

L ) = EAsy[SamN
L ] =

VarAsy(SamN
L ) ≈ 0. To see this, observe that the probability

that a given particle arrives at position ±L at time t = L is
given by

pB(L, L) + pB(−L, L) =
L∏

x=1

B(x, x) +
−L∏
x=1

(1 − B(x,−x)),

where the B(x, t ) are i.i.d. uniform random variables. We use
the law of large numbers to see that

ln(pB(L, L)) =
L∑

x=1

ln(B(x, x)) ≈ −L,

where we have used the fact that − ln(B(x, x)) is an exponen-
tial random variable with a mean of 1. The same holds for
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pB(−L, L), thus we see that

pB(L, L) + pB(−L, L) ≈ 2e−L ≈ 2e−L̂ ln(N ) 	 1/N,

where we have used that L/ ln(N ) → L̂ < 1. When
pB(L, L) + pB(−L, L) 	 1/N (as above), it is likely that
at least one of N independent particles is at ±L. This implies
the above claimed results when L̂ < 1.

One-sided case: In the one-sided barrier case the exact
same analysis above goes through, except only the pB(L, L)
term should be considered.

B. Medium distance regime EnvN
L behavior

The behavior in the medium and large distance regimes
is considerably more complex. We first study the random
variable EnvN

L in these regimes. Then, based on asymptotics
derived for its mean and variance, we determine asymptotic
predictions for SamN

L and MinN
L .

In the medium and large distance regime, our analysis
relies on results [21,22] derived using tools from quantum
integrable systems. We will review these results below. In
essence, they provide precise asymptotic information about
the distribution of PB(X (t ) � L) in various limits as t and L
grow. This information is not equivalent to the knowledge of
the first-passage time distribution PB(τL � t ) that we seek to
understand here. While the event {X (t ) � L} implies {τL � t},
the opposite is not true. It is possible that a particle will pass
the barrier at a time prior to t and then backtrack behind it
at time t . However, as L approaches t , the events become
more and more equivalent since it is harder for a particle
to exit (−L, L) and then backtrack when L is large. For
instance, when L = t (the maximal possible value) the two
events become equivalent. Based on this reasoning, we make
the following approximation that improves as L grows relative
to t :

pB
L (L, t ) ≈ PB(X (t ) � L), pB

L (−L, t ) ≈ PB(X (t ) � −L).

Recall that pB
L (L, t ) and pB

L (−L, t ) are the probabilities of
absorption at L and −L up to time t and their sum, as in
Eq. (9), yields PB(τL � t ). Thus, we arrive at the starting
approximation for our analysis:

PB(τL � t ) ≈ PB(X (t ) � L) + PB(X (t ) � −L). (14)

In the medium distance regime, we assume that L, N → ∞
with L/ ln(N ) → L̂ ∈ (1,∞), a finite number greater than 1.
The key input from Ref. [21] is as follows. Define the random
variable χx,t by

ln(PB(X (t ) � x)) = −t I
(x

t

)
+ t1/3σ

(x

t

)
χx,t , (15)

where x ∈ [0, t] ∩ Z and for v ∈ (0, 1):

I (v) = 1 −
√

1 − v2 and σ (v)3 = 2I (v)2

1 − I (v)
.

Then, REf. [21] shows that for v ∈ (0, 1), χvt,t converges as
t → ∞ in distribution to a GUE TW random variable. By
symmetry, the result of Ref. [21] also holds if in Eq. (15),
ln(PB(X (t ) � x)) is replaced by ln(PB(X (t ) � −x)) and χx,t

is replaced by χ−x,t . It should be noted that while Ref. [21]
does not address the joint distribution of χx,t for different

values of x and t , it is possible to make predictions based
on grounds of KPZ universality [63,64]. In particular, for any
v ∈ (−1, 0) ∪ (0, 1) as T → ∞, the space-time random pro-
cess (x, t ) �→ χvtT +xT 2/3,tT should converge to the KPZ fixed
point [65] and the limiting processes for distinct v should be
independent. Moreover, the local regularity of the KPZ fixed
point is known, which should translate into estimates on the
regularity of χx,t . Some of this understanding will justify the
approximations that follow, involving how χx,t changes when
t varies.

Combining Eqs. (14) and (15) yields

ln(PB(τL � t ))

≈ −t I
(

L
t

) + ln(et1/3σ ( L
t )χL,t + et1/3σ ( L

t )χ−L,t ). (16)

We seek to study the random variable EnvN
L which is defined

by Eq. (11_ and essentially is the t such that PB(τL � t ) =
1/N holds. This yields the following implicit equation for
EnvN

L :

− ln(N ) ≈ −EnvN
L · I

(
L

EnvN
L

)
+ ln(e

(EnvN
L )1/3σ ( L

EnvN
L

)χL,EnvN
L

+ e
(EnvN

L )1/3σ ( L
EnvN

L
)χ−L,EnvN

L ). (17)

We will solve this equation perturbatively. The first-order
solution neglects the second line in Eq. (17) and yields

EnvN
L ≈ T0 := (ln(N ))2 + L2

2 ln(N )
, (18)

i.e., T0 solves ln(N ) = T0I ( L
T0

). We now assume that EnvN
L ≈

T0 + δ with δ � T0 containing the randomness of EnvN
L . Sub-

stituting this into Eq. (17), we can find δ approximately by
solving

− ln(N ) ≈ − (T0 + δ) · I
(

L
T0+δ

)
+ ln(eT 1/3

0 σ ( L
T0

)χL,T0 + eT 1/3
0 σ ( L

T0
)χ−L,T0 )

≈ − (T0 + δ) ·
(

I
(

L
T0

)
+ δ∂t I

(
L
t

)∣∣
t=T0

)
+ ln(eT 1/3

0 σ ( L
T0

)χL,T0 + eT 1/3
0 σ ( L

T0
)χ−L,T0 ). (19)

In the first comparison, we neglected the fact that under the
perturbation to T0 we should write χL,T0+δ and χ−L,T0+δ . This,
however, is justified by the fact that while T0 is of order ln(N ),
δ (as we will see below) is of order ( ln(N ))1/3. By the KPZ
scaling theory mentioned earlier, this change in the time vari-
able of the χ process should have a small impact, which we
neglect in our approximation. In the second comparison, we
utilized the Taylor expansion I ( L

T0+δ
) ≈ I ( L

T0
) + δ∂t I ( L

t )|t=T0 .

Since T0 satisfies − ln(N ) = −T0I ( L
T0

), we can cancel terms
and solve for δ in the resulting equation:

0 ≈ − δT0∂t I
(

L
t

)∣∣
t=T0

− δI
(

L
T0

)
− δ2∂t I

(
L
t

)∣∣
t=T0

+ ln(eT 1/3
0 σ ( L

T0
)χL,T0 + eT 1/3

0 σ ( L
T0

)χ−L,T0 ).

Since L and T0 are both of order ln(N ), it follows from the
chain rule that ∂t I ( L

t )|t=T0 is of order ( ln(N ))−1. Since the
final term above is of order ( ln(N ))1/3, the only consistent
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scaling for δ is that it be of order ( ln(N ))1/3 as well, in which
case all terms are of that order except the term with δ2, which
decays like ( ln(N ))−1/3. Thus, neglecting that term we solve
for δ and find

δ ≈ ln
(
eT 1/3

0 σ ( L
T0

)χL,T0 + eT 1/3
0 σ ( L

T0
)χ−L,T0

)
I
(

L
T0

) + T0∂t I
(

L
t

)∣∣
t=T0

. (20)

Therefore, we have shown that

EnvN
L ≈ T0 + ln

(
eT 1/3

0 σ ( L
T0

)χL,T0 + eT 1/3
0 σ ( L

T0
)χ−L,T0

)
I
(

L
T0

) + T0∂t I
(

L
t

)∣∣
t=T0

. (21)

The above conclusion is in agreement with Eq. (89) in
Ref. [55] (in the one-sided barrier case). In particular, our
EnvN

L random variable is essentially the same as THit (�) with
our L and their � having the same meaning. Our rate function
I is the same as their λ, and our L̂ is equivalent to 1/γ̂ in their
notation.

From Eq. (21), we may extract the following conclusion
regarding the asymptotic behaviors for the mean and variance
of EnvN

L in the medium distance regime:

EAsy
[
EnvN

L

] ≈ M1(L, N ) and VarAsy
(
EnvN

L

) ≈ V1(L, N ),

where M1 and V1 are defined as

M1(L, N ) := (ln(N ))2 + L2

2 ln(N )
,

V1(L, N ) := Var(ln(eT 1/3
0 σ ( L

T0
)χL,T0 + eT 1/3

0 σ ( L
T0

)χ−L,T0 ))(
I
(

L
T0

) + T0∂t I
(

L
t

)|t=T0

)2 . (22)

We have dropped the mean of δ [which is over order
( ln(N ))1/3] from M1 and only retrained the first order term
T0. On the other hand, V1 is precisely the variance of δ (as T0

is deterministic). V1(L, N ) contains the variance of a nontrivial
combination of two random variables χL,T0 and χ−L,T0 . To
estimate this variance we replace both by independent GUE
TW random variables χ and χ ′ (as justified by the above
recorded result of Ref. [21] and KPZ scaling theory). Under
that replacement, the variance in the numerator in V1 is∫

R2
dxdy

(
ln

(
eT 1/3

0 σ ( L
T0

)x + eT 1/3
0 σ ( L

T0
)y))2

p(x)p(y)

−
( ∫

R2
dxdy ln

(
eT 1/3

0 σ ( L
T0

)x + eT 1/3
0 σ ( L

T0
)y)p(x)p(y)

)2

,

(23)

where p(x) and p(y) are the probability density of the GUE
TW distribution. We numerically approximate the double in-
tegrals over the xy plane by integrating over the region x, y ∈
[−10, 10], as is justified by the rapid decay of the density
p. In fact, this integral can be approximated in the limit of
large N as follows. Observe that T0 = ln(N ) L̂2+1

2 , where we
let L = L̂ ln(N ). Thus,

T 1/3
0 σ

(
L
T0

)
= (ln(N ))1/3

(
L̂2+1

2

)
σ
(

2L̂
L̂2+1

)
.

For fixed L̂, this implies that the exponent diverges like
( ln(N ))1/3. Since

ln(erA + erB) ≈ r max(A, B) as r → ∞, (24)

it follows that the numerator in Eqs. (22) is approximately (as
N → ∞) given by(

T 1/3
0 σ

(
L
T0

))2
Var(max(χ, χ ′)), (25)

where χ and χ ′ are independent GUE TW random variables.
This variance can be computed via numerical integration and
this need only be done once (as opposed to for various values
of N and L as above).

One-sided case: The same reasoning as in the two-sided
case yields expressions for the mean and variance of EnvN

L ,
namely, M1 and V1 from Eqs. (22) are replaced now by M̃1

and Ṽ1, where M1 = M̃1 and

Ṽ1(L, N ) :=
(

T 1/3
0 σ ( L

T0
)

I
(

L
T0

) + T0∂t I
(

L
t

)∣∣
t=T0

)2

Var(χ ),

where χ is a GUE TW random variable such that Var(χ ) ≈
0.813. The simplification in Ṽ1 comes from the fact that only
the χL,T0 term is present in the one-sided case—thus, rather
than dealing with the variance of the ln of a sum of expo-
nentials, the ln and exponential terms cancel and the simpler
expression follows.

C. Large-distance regime EnvN
L behavior

In the large-distance regime, we assume that L, N → ∞
with L/(ln(N ))3/2 → L̂ ∈ (0,∞), a finite nonzero number.
The key input from Ref. [22] (see also Eq. (67) in the Sup-
plemental Material in Ref. [26]) is as follows: For v ∈ (0,∞)
and x = vt3/4,

ln(PB(X (t ) � x)) ≈ −x2

2t
− x4

12t3
+ ln

(x

t

)
+ h

(
0,

x4

t3

)
,

(26)

where h(y, s) denotes the random height at position y and time
s of the narrow wedge solution to the KPZ equation

∂sh(y, s) = 1
2∂2

y h(y, s) + 1
2 (∂yh(y, s))2 + η(y, s), (27)

where η(y, s) is space-time white noise [58–62]. By symme-
try, Eq. (26) will also hold with ln(PB(X (t ) � −x)) and with
an asymptotically independent fluctuation term h′(0, x4

t3 ) that
has the same law as h.

Similar to our analysis in the medium distance regime,
combining Eqs. (14) and (15) yields

ln(PB(τL � t ))

≈ −L2

2t
− L4

12t3
+ ln

(
L

t

)
+ ln

(
eh(0, L4

t3 ) + eh′(0, L4

t3 ))
.

(28)

EnvN
L is essentially the t such that PB(τL � t ) = 1/N , which

yields the implicit equation for EnvN
L

− ln(N ) ≈ − L2

2EnvN
L

− L4

12
(
EnvN

L

)3 + ln

(
L

EnvN
L

)

+ ln
(
e

h(0, L4

(EnvN
L )3

) + e
h′(0, L4

(EnvN
L )3

))
, (29)
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where h and h′ are independent as above. The first term on the
right-hand side is dominant and solving ln(N ) = L2

2T0
yields

the first-order behavior of EnvN
L ≈ T0 with

T0 = L2

2 ln(N )
.

Under our scaling of L, this term is of order ( ln(N ))2 while
the other deterministic terms on the right-hand side of Eq. (29)
are either order 1 or ln ( ln(N )). Thus, for the sake of the
mean of EnvN

L , T0 will suffice. To study its variance, we
write EnvN

L = T0 + δ, where δ � T0 contains the randomness
of EnvN

L . Neglecting the lower order terms in Eq. (29) (the
second and third terms on the right-hand side), Taylor expand-
ing − L2

2EnvN
L

= − L2

2(T0+δ) ≈ − L2

2T0
+ L2

2T 2
0
δ and substituting T0 for

EnvN
L in the h and h′ expressions (as is again justified by the

KPZ scaling theory), we arrive at an approximation for

δ ≈ −2T 2
0

L2
ln(e

h(0, L4

T 3
0

) + e
h′(0, L4

T 3
0

)
).

From the above, we may extract the following conclusion
regarding the asymptotic behaviors for the mean and variance
of EnvN

L in the large distance regime:

EAsy
[
EnvN

L

] ≈ M2(L, N ) and VarAsy
(
EnvN

L

) ≈ V2(L, N ),

where M1 and V1 are defined as

M2(L, N ) := L2

2 ln(N )
,

V2(L, N ) := L4 Var(ln(eh(0,
8(ln(N ))3

L2 ) + eh′(0,
8(ln(N ))3

L2 ) ))

4(ln(N ))4
. (30)

Notice that for L = ( ln(N ))3/2L̂ (as in the large distance
regime scaling), the KPZ equation time 8(ln(N ))3

L2 = 8/L̂2.
Thus, the calculation of the variance in V2 requires numer-
ically integration using the exact formula for the one-point
distribution for the KPZ equation from [59–62]. This formula
is nontrivial to compute numerically due to its complexity.
However, Ref. [66] (used in the work of Ref. [67]) con-
tains the numerics for the density of h(0, s) for s ∈ {0.25,

0.35, 0.5, 0.75, 1.2, 2, 3.5, 6.5, 13, 25, 50, 100, 250}. In the
limit where s → 0 or s → ∞, the law of h(0, s) converges to
be Gaussian or GUE TW (with appropriate scaling) and thus
we can combine these limiting behaviors with the numerical
data to produce, via smooth interpolation, a curve

s �→ Var(ln(eh(0,s) + eh′(0,s) ))

for all s that we use to numerically evaluate V2(L, N ).
One-sided case: The same reasoning as in the two-sided

case yields expressions for the mean and variance of EnvN
L ,

namely, M2 and V2 from Eqs. (30) are replaced now by M̃2

and Ṽ2, where M̃2 = M2 and

Ṽ2(L, N ) := L4 Var
(
h
(
0, 8(ln(N ))3

L2

))
4(ln(N ))4

.

In this case, the variance in question was numerically com-
puted and plotted in Ref. [67].

D. Stitching together the medium and large distance
regime EnvN

L behavior

We compare the large L [in the ln(N ) scale] behavior of
V1(L, N ) to the small L [in the ( ln(N ))3/2 scale] behavior
of V2(L, N ) and show that they match. This justifies defin-
ing VarAsy(EnvN

L ) via smoothly stitching these two functions
between these two scaling regimes. We then record the very
large distance asymptotics that should persist for all L be-
yond the ( ln(N ))3/2 regime. We only address the variances
below since M1(L, N ) clearly converges to M2(L, N ) when
L 	 ln(N ).

Recall V1(L, N ) from Eqs. (22). Using the discussion after
Eq. (23), namely, Eq. (25), we can approximate this as

V1(L, N ) ≈
(
T 1/3

0 σ
(

L
T0

))2
Var

(
max(χ, χ ′)

)(
I
(

L
T0

) + T0∂t I
(

L
t

)∣∣
t=T0

)2 ,

where χ and χ ′ are independent GUE TW random variables.
Observe the following asymptotic: For v → 0, σ (v) ≈ v4/3

21/3

while for L 	 ln(N ), T0 ≈ L2

2 ln(N ) and

I

(
L

T0

)
+ T0∂t I

(
L

t

)∣∣∣∣
t=T0

≈ −2

(
ln(N )

L

)2

.

Putting these together shows that for L 	 ln(N ),

V1(L, N ) ≈ L8/3Var(max(χ, χ ′))
21/3(ln(N ))2

.

Now, let us compare this to the behavior of V2(L, N ) from
Eqs. (30) when L � ( ln(N ))3/2. Observe that the KPZ equa-
tion time s in V2 is given by s = 8(ln(N ))3

L2 , which goes to infinity
as the ratio L/( ln(N ))3/2 tends to zero. Thus, to extract the
behavior of V2 we must use the large time behavior of the KPZ
equation one-point distribution, which says that the random
variable χs, defined by

h(0, s) ≈ χs

( s

2

)1/3
− s

24
,

converges as s → ∞ to a GUE TW random variable [59–62].
Letting χ and χ ′ denote the limiting independent GUE TW
random variables arising from h and h′ in V2, and using
Eq. (24), it follows that when L � ( ln(N ))3/2,

V2(L, N ) ≈ L8/3Var(max(χ, χ ′))
21/3(ln(N ))2

,

which matches the L 	 ln(N ) behavior of V1(L, N ).
This matching of the two expressions V1 and V2 justifies

stitching them together to provide a single continuous curve
for the asymptotic variance of the environmental fluctuations
EnvN

L . To do this, we use an error function centered at L =
(ln(N ))5/4 with a width of ( ln(N ))6/5 to ensure a smooth
crossover between the two regimes. The resulting asymptotic
variance formula is then given by

VarAsy
(
EnvN

L

)=φ(L, N )V1(L, N ) + (1 − φ(L, N ))V2(L, N ),
(31)

054101-8



FIRST-PASSAGE TIME FOR MANY-PARTICLE … PHYSICAL REVIEW E 109, 054101 (2024)

FIG. 4. We plot the environmental variance, VarNum(EnvN
L ), for

N = 1028 particles (blue); the asymptotic variance V1 for the short
time regime given in Eqs. (22) (orange dashed line); the asymptotic
variance V2 for the long time regime given in Eqs. (30) (purple dashed
line); the interpolation VarAsy(EnvN

L ) between these regimes using
Eq. (31) (black dashed line); and the power-law asymptotics of V1

and V2 (black dotted lines)

where V1(L, N ) and V2(L, N ) are defined in Eqs. (22) and (30),
respectively, where the interpolation function

φ(L, N ) := 1

2

(
1 − erf

(
L − (ln(N ))5/4

(ln(N ))6/5

))
(32)

with the error function erf (x) = 2√
π

∫ x
0 e−y2

dy. We likewise

define EAsy[EnvN
L ] via the same interpolation scheme as in

Eq. (31), using the fact that M1 and M2 smoothly cross over
too. In fact, since the large L asymptotic of M1 is precisely in
agreement with M2, the interpolation is essentially unneces-
sary.

Figure 4 shows how we stitch together in Eq. (31) the
medium and large distance regimes to produce VarAsy(EnvN

L ).
It shows that this interpolation scheme provides a smooth
crossover between the two regimes and agrees with numerical
measurements.

The above asymptotic formula VarAsy(EnvN
L ) will be com-

pared to numerical simulations for wide ranges of N and
L in Sec. VII. As will become clear there, the crossover
L8/3/( ln(N ))2 power-law behavior observed above is some-
thing of a ghost. For realistic sizes of N , the range between
ln(N ) and ( ln(N ))3/2 is rather narrow. For instance, in
Sec. VII we study the range N = 102 to N = 1028. On the
lower end of this range, ln(N ) ≈ 4.6 and ( ln(N ))3/2 ≈ 9.9
while on the upper end ln(N ) ≈ 64 while ( ln(N ))3/2 ≈ 517.
So, even for N = 1028, there is not even a decade between
ln(N ) and ( ln(N ))3/2.

What is more important in terms of comparison to numer-
ical data is the behavior of the variance of EnvN

L in the limit
where L 	 ( ln(N ))3/2. This unbounded regime demonstrates
a power law that will be important to compare to the impact
of the SamN

L variance.
To probe the behavior of VarAsy(EnvN

L ) as L 	 ( ln(N ))3/2,
we need only study the corresponding behavior of V2(L, N ).

In that case, the KPZ time s = 8(ln(N ))3

L2 goes to zero. Thus,
we must make use of the small time (Edwards-Wilkinson)
asymptotics that show that the random variable Gs,
defined by

h(0, s) ≈ − s

24
− ln(

√
2πs) +

(πs

4

)1/4
Gs, (33)

converges as s → 0 to a standard Gaussian random variable
G [59–62]. Therefore, using ex ≈ 1 + x and ln(1 + x) ≈ x as
x → 0, we find that

ln(eh(0,s)+eh′(0,s) ) ≈ − s
24 − ln

(√
πs
2

)
+ 1

2

(
πs
4

)1/4
(G+G′).

(34)

Substituting s = 8(ln(N ))3

L2 and taking the variance yields

Var
(

ln
(
eh(0,

8(ln(N ))3

L2 ) + eh′(0,
8(ln(N ))3

L2 ))) ≈ 1

2

(
2π (ln(N ))3

L2

)1/2

,

where we used that Var(G + G′) = 2 since G and G′ are in-
dependent standard Gaussian random variables. Substituting
this into Eqs. (30) shows that where L 	 ( ln(N ))3/2:

VarAsy
(
EnvN

L

) ≈ V2(L, N ) ≈ 1

4

√
π

2

L3

(ln(N ))5/2
. (35)

This power-law behavior will be quite visible in the numerical
data from Sec. VII.

One-sided case: The only difference in this case is that
we use Ṽ1 and Ṽ2 in place of V1 and V2. This crossover
behavior between the regime where L is of order ln(N ) and
( ln(N ))3/2 still matches up and the same interpolation formula
Eq. (31) can be used. For the L 	 ( ln(N ))3/2 asymptotics,
the right-hand side of Eq. (35) ends up being twice as large
in the one-sided case as in the two-sided case. This may seem
counterintuitive since there are two Gaussians in the two-sided
case versus one in the one-sided case. However, in the cal-
culation in Eq. (34), we used ln (eh(0,s) + eh′(0,s) ) ≈ ln(2) +
1
2 (h(0, s) + h′(0, s)). The variance of 1

2 (h(0, s) + h′(0, s)) is
half that of the variance of h(0, s), thus explaining the factor
of 2 difference.

E. SamN
L and MinN

L behavior

We now argue that the environmental and sampling fluctu-
ations EnvN

L and SamN
L are asymptotically independent and

that the sampling fluctuations are Gumbel distributed. The
independence is strongly supported by our numerical data,
see, for instance, Fig. 3.

To start, observe that for large N and small PB(τL � t ), we
can rewrite Eq. (10) as

PB(
MinN

L � t
) ≈ e−NPB(τL�t ). (36)

Using the nonbacktracking approximation in Eq. (14) and the
medium distance range asymptotic expansion Eq. (15), we
arrive at the starting formula

ln
(
PB(

MinN
L � t

))
≈ −N

(
e−t I (

L
t )+t1/3σ ( L

t )χL,t + e−t I (
L
t )+t1/3σ ( L

t )χ−L,t
)
. (37)
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We will work here within the medium distance regime asymp-
totics. A similar analysis could be performed in the large
distance regime and the result would agree with the L 	
ln(N ) behavior derived below, so we do not repeat this
derivation.

Recalling that SamN
L = MinN

L − EnvN
L , we have

that PB(SamN
L � s) = PB(MinN

L � EnvN
L + s). Thus,

ln (PB(SamN
L � s)) is approximately given by the right-hand

side of Eq. (37) with t = EnvN
L + s. With this in mind, we

will use the following Taylor expansion in the exponential on
the right-hand side of Eq. (37):

− (
EnvN

L + s
)
I
(

L
EnvN

L +s

)
+ (

EnvN
L + s

)1/3
σ
(

L
EnvN

L +s

)
χL,EnvN

L +s

≈ −(
EnvN

L + s
)(

I
(

L
EnvN

L

)
+ s∂t I

(
L
t

)∣∣
t=EnvN

L

)
+ (

EnvN
L

)1/3
σ

(
L

EnvN
L

)
χL,EnvN

L

≈ ln
(
PB(

X
(
EnvN

L

)
� L

))
− s

(
I
(

L
EnvN

L

)
+ EnvN

L ∂t I
(

L
t

)∣∣
t=EnvN

L

)
. (38)

Notice that in the first comparison above, we have assumed
that (EnvN

L + s)1/3σ ( L
EnvN

L +s
)χL,EnvN

L +s can be replaced by the

same term with EnvN
L instead of EnvN

L + s. This is a nontrivial
assumption which ultimately implies the Gumbel form of
SamN

L and its independence from EnvN
L . This should be justifi-

able based on the KPZ scaling theory and the fact that (as we
will see) EAsy[EnvN

L ] 	 EAsy[SamN
L ]. The second comparison

uses Eq. (15) and throws out the s2 term. Of course, the same
expansion above applies when L �→ −L and PB(X (EnvN

L ) �
L) is replaced by PB(X (EnvN

L ) � −L). Putting these expan-
sions together with Eq. (37) yields

ln
(
PB(SamN

L � s)
)

≈ −N
(
PB(

X (EnvN
L ) � L

) + PB(
X

(
EnvN

L

)
� −L

))
× e

−s
(

I

(
L

EnvN
L

)
+EnvN

L ∂t I
( L

t

)∣∣∣
t=EnvN

L

)
.

(39)

Invoking the nonbacktracking approximation in Eq. (14) and
the definition Eq. (11) of EnvN

L , it follows that PB(X (EnvN
L ) �

L) + PB(X (EnvN
L ) � −L) ≈ PB(τL � EnvN

L ) ≈ 1/N . Using
this along with replacing EnvN

L by T0 as in Eq. (18), from
Eq. (39) we see that

ln
(
PB(

SamN
L � s

)) ≈ −e
−s

(
I
( L

T0

)
+T0∂t I

( L
t

)∣∣∣
t=T0

)
.

Observe that

I
(

L
T0

)
+ T0∂t I

(
L
t

)∣∣
t=T0

= I (v) − vI ′(v)
∣∣∣
v=L/T0

=
√

1 − v2 − 1√
1 − v2

∣∣∣
v=L/T0

,

which is negative and behaves like −v2/2 as v → 0. This
shows that asymptotically −SamN

L has the law of a Gumbel
distribution with location parameter 0 and scale parameter

−(I ( L
T0

) + T0∂t I ( L
t )|t=T0 )

−1
. From this and the formula for the

mean and variance of a Gumbel random variable in terms of
its location and scale parameter, we see that in the medium
distance regime

EAsy[SamN
L

] ≈ γ(
I
(

L
T0

)
+ T0∂t I

(
L
t

)∣∣
t=T0

) ,

VarAsy
(
SamN

L

) ≈ π2

6
(

I
(

L
T0

)
+ T0∂t I

(
L
t

)∣∣
t=T0

)2 , (40)

where γ ≈ .577 is the Euler gamma constant. In the limit
where L 	 ln(N ), this yields

EAsy
[
SamN

L

] ≈ − γ L2

2(ln(N ))2
,

VarAsy
(
SamN

L

) ≈ π2

24

L4

(ln(N ))4
. (41)

Observe that EAsy[SamN
L ] � EAsy[EnvN

L ] since the former
grows like L2/( ln(N ))2 while the latter like L2/ ln(N ). Thus,
we are justified in dropping EAsy[SamN

L ] and approximating
EAsy[MinN

L ] ≈ EAsy[EnvN
L ] as we will do in Eq. (44).

Though the above derivation was done in the medium dis-
tance regime, the same could be repeated in the large distance
regime and the above asymptotic behavior in Eqs. (41) would
follow (along with the Gumbel scaling limit for SamN

L ). We do
not repeat this calculation here. This, however, justifies using
the asymptotic formula from Eqs. (40) for both the medium
and large distance regimes [and L 	 ( ln(N ))3/2 too].

From the above-explained Gumbel limit, observe that the
location and scale parameters only depend on the determin-
istic portion of EnvN

L , given by T0, and are independent of
the higher order, random term, of EnvN

L . This implies the
asymptotic independence and hence allows us to represent
MinN

L as a sum of EnvN
L (whose limiting distribution, mean

and variance were identified earlier) and SamN
L (which is

Gumbel distributed as above). This independence implies the
following addition law:

VarAsy
(
MinN

L

) = VarAsy
(
EnvN

L

) + VarAsy
(
SamN

L

)
. (42)

The same trivially holds for the mean.
Therefore, combining Eq. (31) with Eqs. (40), we conclude

(see also Fig. 4)

VarAsy
(
MinN

L

) ≈ φ(L, N )V1(L, N ) + (
1 − φ(L, N )

)
V2(L, N )

+ π2

6
(

I
(

L
T0

)
+ T0∂t I

(
L
t

)∣∣
t=T0

)2 , (43)

where V1(L, N ) and V2(L, N ) are defined in Eqs. (22) and
(30), respectively, and the interpolation function φ is defined
in Eq. (32) and the final term comes from Eqs. (40). Similarly,

EAsy
[
MinN

L

] ≈ M1(L, N ). (44)

It is worth emphasizing (and will be apparent in the nu-
merical simulation data that follows) that in the asymptotic
formula VarAsy(MinN

L ) in Eq. (43), there is a competi-
tion between VarAsy(EnvN

L ) and VarAsy(SamN
L ). By Eq. (35),

VarAsy(EnvN
L ) behaves (anywhere past the short lived medium

distance regime) according to the power law L3/(ln(N ))5/2
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while by Eq. (41), VarAsy(SamN
L ) likewise behaves like

L4/(ln(N ))3/2. Setting these equal shows a crossover when
L is of order (ln(N ))3/2, i.e., the large distance regime. For
smaller L, VarAsy(EnvN

L ) 	 VarAsy(SamN
L ) while for larger L

the opposite holds.
One-sided case: The behavior of SamN

L is easily seen to be
asymptotically the same in this case. The behavior of MinN

L
thus involves combining the one-sided behavior of EnvN

L de-
scribed earlier with the above behavior of SamN

L .

F. Asymptotic behavior for the SSRW

We now derive the extreme first-passage time behavior for
the SSRW model where the transition biases are determin-
istic with B(x, t ) = 1/2. We derive these results using the
same techniques and assumptions used for the RWRE model.
The methods used in Refs. [10,13] should also yield an al-
ternative derivation of the asymptotics below, though we do
not pursue that here. To distinguish from the RWRE model,
we will use a tilde to label random variables and functions
associated to the SSRW model below.

Just as for the RWRE model, we find a trivial short dis-
tance behavior for the SSRW model but with a larger cutoff
on the short distance length scale; namely, when L, N →
∞ with L/ ln(N ) → L̂ < 1/ ln(2), the mean and variance of
the extreme first-passage time behaves asymptotically like
EAsy[M̃in

N
L ] ≈ L and VarAsy(M̃in

N
L ) ≈ 0. The 1/ ln(2) comes

from solving for L such that (1/2)L ≈ 1/N [we do not need to
use the law of large numbers here since all B(x, t ) = 1/2].

The other length regime is when L, N → ∞ with
L/ ln(N ) → L̂ > 1/ ln(2) [or when L/ ln(N ) goes to infinity].
Using Stirling’s formula (or, more generally, Cramer’s theo-
rem from the large deviation theory) the tail of the probability
distribution for the location of a SSRW, X̃ (t ), satisfies

P (X̃ (t ) � x) ≈ e−t Ĩ( x
t ), (45)

where Ĩ (v) = 1
2 ((1 + v) ln(1 + v) + (1 − v) ln(1 − v)) and

where we no longer write PB since, deterministically, we have
assumed here that all B(x, t ) = 1/2.

Using the same nonbacktracking approximation as in the
RWRE case [Eq. (14)] in conjunction with Eq. (45) yields

P (τ̃L � t ) ≈ 2e−t Ĩ ( L
t ). (46)

We look for T̃0 such that P (τ̃L � T̃0) = 1/N . This is a de-
terministic analog to EnvN

L and plays the role of the centering
of the extreme first-passage time. Since T̃0 is deterministic for
the SSRW, there are no environmental fluctuations. Dropping
the factor of 2 in Eq. (46) (as it is insignificant in the asymp-
totic regimes we consider here) T̃0 should satisfy

ln (N ) ≈ T̃0 · Ĩ

(
L

T̃0

)
. (47)

Although we cannot solve this analytically for T̃0, we can
solve for T̃0 numerically and asymptotically in the limit T̃0 →
∞ (which occurs when L grows fast enough compared to
ln(N )) as we show below.

Substituting Eq. (46) into Eq. (36) and expanding about T̃0

such that M̃in
N
L = T̃0 + s yields

P
(
M̃in

N
L � T̃0 + s

) ≈ e−2Ne
−(T̃0+s)Ĩ ( L

T̃0+s
)

.

Expanding about T̃0 such that Ĩ ( L
T̃0+s

) ≈ Ĩ ( L
T̃0

) +
s∂t Ĩ ( L

t )|t=T̃0
gives

P
(
M̃in

N
L � T̃0 + s

) ≈ e−e
−s(Ĩ ( L

T̃0
)+T̃0∂t Ĩ ( L

t )|t=T̃0
)

.

This shows −M̃in
N
L is Gumbel distributed with location pa-

rameter −T̃0 and scale parameter −(Ĩ ( L
T̃0

) + T̃0∂t Ĩ ( L
t )|t=T̃0

)−1

(which can be checked to be positive as needed to define a
Gumbel distribution). Combining the above calculations, we
conclude that for the SSRW

EAsy
[
M̃in

N
L

] ≈ T̃0,

VarAsy
(
M̃in

N
L

) ≈ π2

6
(
Ĩ
(

L
T̃0

) + T̃0∂t Ĩ
(

L
t

)∣∣
t=T̃0

)2 . (48)

Notice that we have dropped the lower order term γ (Ĩ ( L
T̃0

) +
T̃0∂t Ĩ ( L

t )|t=T̃0
)−1 from the approximation to EAsy[M̃in

N
L ]

above, just as we did in the RWRE case. In the limit L 	
ln(N ), we also have T̃0 	 L. Thus, using the expansion Ĩ (v) ≈
v2/2 as v → 0 we can solve for T̃0 and thus extract the follow-
ing asymptotics, valid in the L 	 ln(N ) limit:

EAsy
[
M̃in

N
L

] ≈ L2

2 ln(N )
,

VarAsy
(
M̃in

N
L

) ≈ π2

24

L4

(ln(N ))4
. (49)

These match the corresponding asymptotic sampling mean
and variance formulas for the RWRE in Eq. (41).

One-sided case: The same argument and result follows.

VII. COMPARISON OF ASYMPTOTIC
AND NUMERICAL RESULTS

We find excellent agreement between our asymptotic the-
ory and numerical simulations not only for very large N ,
but even for as few as N = 100 particles. These results are
summarized through a number of figures. As a convention,
we use solid curves (or data points in Figs. 3 and 8) to record
outcomes of numerical simulations, dashed curves to record
our asymptotic theory, and dotted lines to denote relevant
power-laws. All plots are in log - log coordinates so power-
laws are straight lines. In Figs. 3, 5, 6, 7, and 8, each color
corresponds to a different value of N while in Fig. 2 a single
value of N is taken and the colors correspond to numerical and
asymptotic curves for the variance of MinN

L , EnvN
L , or SamN

L .
As discussed earlier, the theoretical curves for

Var(MinN
L ), Var(EnvN

L ), and Var(SamN
L ) in Fig. 2 closely

match the numerical results except for L very close to
ln(N ), where finite-size effects dominate. This could be
partially remedied by studying the crossover from the
short to medium distance regime, for instance, using the
central limit theorem. In the medium distance regime,
the numerical data VarNum(MinN

L ) closely matches
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FIG. 5. We plot the numerically measured (solid) and asymp-
totic theory (dashed) variance of the extreme first-passage time,
Var(MinN

L ), for N = 102, 105, 1012, and 1028 (each labeled with
a different color). The asymptotic theory variance, VarAsy(MinN

L ),
comes from Eq. (43). Note, our asymptotic theory matches our
numerics to such precision that they are nearly indistinguish-
able on this scale. The inset shows the same data uncollapsed
to better distinguish different N . The lower plot shows the ratio
VarNum(MinN

L )/VarAsy(MinN
L ).

VarNum(EnvN
L ) as well as the asymptotic formula

VarAsy(EnvN
L ). In the large distance regime, VarNum(MinN

L )
now closely matches VarNum(SamN

L ) as well as the asymptotic
formula VarAsy(SamN

L ). This is because in the medium
distance regime, Var(SamN

L ) � Var(EnvN
L ) while in the large

distance regime, Var(SamN
L ) 	 Var(EnvN

L ). The interpolation

FIG. 6. We plot the numerically measured (solid) and asymp-
totic theory (dashed) environmental variance, Var(EnvN

L ), for N =
102, 105, 1012, and 1028 (each labeled with a different color). The
asymptotic theory variance, VarAsy(EnvN

L ), comes from Eq. (31).
Note, our asymptotic theory matches our numerics to such precision
that they are nearly indistinguishable on this scale. The inset shows
the same data uncollapsed to better distinguish different N . The lower
plot shows the ratio VarNum(EnvN

L )/VarAsy(EnvN
L ).

FIG. 7. We plot the mean of the extreme first-passage time,
ENum[MinN

L ], using solid lines of varying colors for N =
102, 105, 1012, and 1028 particles. The dashed lines are the asymp-
totic curves EAsy[MinN

L ] from Eq. 44. Note, our asymptotic theory
matches our numerics to such precision that they are nearly indistin-
guishable on this scale. The inset shows the uncollapsed data to better
distinguish different values of N . The collapse occurs by scaling both
the x axis and y axis by ln(N ). The lower plot shows the ratio of
ENum[MinN

L ]/EAsy[MinN
L ], confirming the close fit.

curve VarAsy(MinN
L ) closely matches VarNum(MinN

L ) over
the full medium and long distance regimes. For the SSRW,
VarNum(M̃in

N
L ) closely agrees with VarAsy(M̃in

N
L ) [which is

quite close to VarAsy(SamN
L ) from the RWRE model for L

beyond the medium distance regime].
Figures 5 and 6 show the numerically measured variances

of MinN
L and EnvN

L for a range of system sizes as well as the

FIG. 8. We plot VarNum(MinN
L ) − VarAsy(M̃in

N
L ) for

N = 102, 105, 1012 and 1028 averaged into bins with logarithmically
spaced bin edges to achieve 4 bins per decade of L. The dots
represent positive values of this difference whereas the × represents
the magnitude of negative values of this difference. The dashed
line is VarAsy(EnvN

L ) in Eq. (31) for each N corresponding to its
respective color.

054101-12



FIRST-PASSAGE TIME FOR MANY-PARTICLE … PHYSICAL REVIEW E 109, 054101 (2024)

corresponding asymptotic theory results given by Eqs. (43)
and (31), respectively. For large distances, the asymptotic
predictions and numerical results match for all system sizes,
ranging from N = 102 to 1028. For L/ ln(N ) ≈ 1, we see
additional variance due to finite-size effects blunting the tran-
sition between the ballistic and diffusive regimes. The ratio
of numerics to asymptotic predictions for MinN

L and EnvN
L

are nearly 1 for large L/ ln(N ) indicating a good agreement
between the numerics and asymptotic predictions. The asymp-
totic ratio approaches 1 for larger N . However, even for N =
102 the asymptotic ratio is about .9.

Figure 7 shows the comparison of the numerical measure-
ments and asymptotic theory for the mean of the extreme
first-passage time MinN

L for various N . For system sizes rang-
ing from N = 102 to 1028, the data and asymptotic curves are
nearly indistinguishable and fall onto the same master curve
given by Eq. (44). The ratio of ENum[MinN

L ]/EAsy[MinN
L ] is

nearly 1 for every N , indicating the numerics and asymptotic
predictions are in agreement. The region with power law L
corresponds to the short distance ballistic regime while the
L2 power law is valid for all times from the medium distance
regime on.

The close agreement between VarNum(MinN
L ) and

VarAsy(MinN
L ) in Fig. 5 provides a verification of the

theoretical addition law, Eq. (42). Figures 3 and 8 provide
further confirmation of the addition law. In particular, Fig. 3
shows the power law of Var(EnvN

L ) is clearly recovered,
though there is considerably more variation in the ratio of
(VarNum(MinN

L ) − VarNum(SamN
L ))/VarAsy(EnvN

L ) than in
similar ratios observed in previous figures. This is not so
surprising since the difference of two numerical measures
introduces additional errors. Also for larger N , the number
of systems used to estimate the variances is smaller than for
small N , thus introducing additional error for large N .

Figure 8 shows another route to measure the envi-
ronmental variance Var(EnvN

L ) by taking the difference

VarNum(MinN
L ) − VarAsy(M̃in

N
L ). As we explain in Sec. VIII,

we use VarAsy(M̃in
N
L ) instead of VarAsy(SamN

L ) here since
in experimental settings it may be possible to estimate the
Einstein diffusion coefficient and hence develop a predic-
tion for VarAsy(M̃in

N
L ). Since we have shown above that

VarAsy(M̃in
N
L ) and VarAsy(SamN

L ) match beyond the medium
distance regime, we thus expect to still be able to re-
cover the power-law behavior of Var(EnvN

L ) by studying

VarNum(MinN
L ) − VarAsy(M̃in

N
L ).

In Fig. 8, the dots record positive values of this difference
VarNum(MinN

L ) − VarAsy(M̃in
N
L ) [scaled by ( ln(N ))1/2, as

one should to see a collapse of the data] and the × records the
magnitude of negative values of this difference. Clearly, the
presence of negative values contradicts the addition law and
recovery of Var(EnvN

L ). These values, however, only arise for
either small N (102 and 105) or large L. For large N (1012 and
1028) the dots closely follow the asymptotic environmental
variance curve VarAsy(EnvN

L ) for just under two decades (as
evidenced from the ratio being close to 1) and then peel off
following what looks to be an L4 power law [as opposed to
the L3 power-law behavior of VarAsy(EnvN

L )]. The explanation

for the lack of agreement for small N or large L likely arises
from the presence of higher order corrections to VarAsy(M̃in

N
L )

which scale like L4 but with prefactors that decay with N (the
presence of such terms can be seen from Ref. [68]). Therefore,
for small N or large L these corrections become relevant.

VIII. CONCLUSION

We consider two models for many-particle diffusion in
a common environment. The first treats each particle as an
independent SSRW while the second RWRE model treats
the environment as a space-time random biasing field within
which each particle performs biased random walks. We fo-
cus on the extreme first-passage time MinN

L , i.e., the time
when the first of N particles passes a barrier distance L from
their common starting location. We show that the random-
ness of MinN

L splits into two essentially independent pieces,
the randomness EnvN

L from the environment and the ran-
domness SamN

L from sampling N random walks within that
environment.

We determine theoretical predictions (related to the KPZ
universality class and equation) for the behavior of each
of these contributions based on asymptotic limit theorems
in different scaling regimes of N and L. While Var(SamN

L )
closely matches the variance from sampling in the SSRW
model for large L, the Var(EnvN

L ) term has no parallel
in the SSRW case where the environment is determinis-
tic. We uncover a L3/( ln(N ))5/2 power law describing the
large L behavior of Var(EnvN

L ). This should be contrasted
with the L4/( ln(N ))4 power law that we demonstrate de-
scribes the large L behavior of Var(SamN

L ). Thus, for large
L, owing to the independence of EnvN

L and SamN
L , we see

that Var(MinN
L ) = Var(EnvN

L ) + Var(SamN
L ) and only the L4

power law is visible. We numerically verify all of our predic-
tions for system sizes ranging from N = 102 to N = 1028 and,
remarkably, see close agreement over this entire range.

Our results point to a potential experimental approach to
probe the nature of a random or disordered environment by
observing the extreme behavior of many particles diffusing
within it. In Fig. 8, we show that it is possible to recover, over
multiple decades, the L3 power-law behavior of Var(EnvN

L )
by numerically measuring Var(MinN

L ) and then subtracting the

asymptotic theory formula for Var(M̃in
N
L ), the SSRW extreme

first-passage time variance. This is because the asymptotic be-
havior of Var(M̃in

N
L ) for L 	 ln(N ) essentially matches that

of Var(SamN
L ) in the RWRE model. For the SSRW model (or

its Brownian analog), a formula for Var(MinN
L ) can be deter-

mined asymptotically just by knowing the Einstein diffusion
coefficient, which in turn can be estimated experimentally by
following the motion of a single particle. Thus, by observing
the motion (i.e., extreme first-passage time, and Einstein dif-
fusion coefficient) of many particles diffusing in a common
environment, we are (at least in our numerical simulations)
able to recover the power law that describes the environmental
fluctuations. Moreover, with some error, we are also able to es-
timate the pre-factor of this power law, which contains further
information about the random environment. This prefactor
could be termed the extreme diffusion coefficient and, in future
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work, we plan to develop a more general map between random
environments (beyond the special uniform on [0, 1] choice)
and extreme diffusion coefficients.

In experimental systems such as N colloids or fluorescent
dyes diffusing in quasi-1D channels or photons (here N re-
lates to the laser intensity) diffusing through quasi-1D tubes
filled with scattering media, it should be possible to precisely
observe first-passage times to various distances, as well as to
estimate the Einstein diffusion coefficient for a single particle.
Our numerical conclusions suggest a possible route to observe
the hidden environment within which these real diffusions
occur. Uncovering an L3 power law would strongly suggest
that the RWRE model more accurately captures the behavior
of extreme behavior in many-particle diffusions. Moreover,
the prefactor to this power law would constitute a measure-
ment of the extreme diffusion coefficient and thus serve as a
microscope through which to view the hidden environment.
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